
Lecture 3: MSO to Regular Languages

To describe the translation from MSO formulas to regular languages one has to be a
bit more formal! All the examples we used in the previous class were sentences i.e., every
variable that occured in the formula occured within the scope of a quantifier. (A variable
that is tied to quantifier is called a bound variable. Every variable in a sentence is a bound
variable.) Given a sentence φ, any word w either satisfies φ or does not.

However, in order to reason about sentences, one has to reason about subformulas of
sentences and these need not be sentences. As a matter of fact, subformulas of sentences are
usually NOT sentences.

For example, consider formulas First(x) and y = x + 1 that were used repeatedly in the
previous lecture. The former has x as a free variable while the latter has x and y as free
variables. A free variable is one that is not “captured” by a quantifier. It does not make
sense to ask if w satisfies First(x). Instead, one has to give a word w and a position i in the
word w and then one may ask if First(i) is true. Similarly to evaluate y = x + 1, one needs
values (i.e. positions) for the variables x and y before we can verify its truth.

For the moment let us restrict overselves to first order formulas. Then, to meaningfully
discuss the truth or falsity of a formula with k free variables, we need a word along with
assignment of positions to the k variables. For example, the formula φ = (x < y)∧a(x)∧b(y)
is true of bacabc with x assigned position 2 and y assigned position 5. We represent such a
word with assignments for x and y as a word decorated with the variables x and y as follows:

b a c a b c

x y

On the other hand the formula φ is not true of bacabc if x and y are assigned position 5.

b a c a b c

x

y

Notice that these decorated words can themselves be thought of as words over the alpha-
bet Σ×2V where V is the set of (free) variables. For instance, the two decorated models corre-
spond to the words (b, ∅)(a, {x})(c, ∅)(a, ∅)(b, {y})(c, ∅) and (b, ∅)(a, ∅)(c, ∅)(a, ∅)(b, {x, y})(c, ∅)
respectively. Often we shall a for (a, ∅) and write b(a, {x})ca(b, {y})c and baca(b, {x, y})c
instead.

For the purposes of this lecture let us fix the basic alphabet to be Σ. Following Straubing
[2], given a set V of variables we define the set of V -words to be words over the alphabet
Σ×2V to be those that describe a word over Σ and indicate the positions of all the variables
V in the word. Formally, a V -word is a word (a1, U1)(a2, U2) . . . (ak, Uk) where

1. Ui ∩ Uj = ∅ for i 6= j.

2.
⋃

1≤i≤k Ui = V .

1

Thus, a V -word associates a unique position of the underlying word, over the alphabet Σ,
with each variable in V .

Given a formula φ with all of its free variables (free(φ)) coming from V and a V -word w

we can define whether w satisfies φ in the obvious way (A formal definition is given in the
appendix). Thus, if free(φ) ⊆ V then φ defines a language of V -words. (In particular, when
free(φ) is empty, the φ defines a language over the set of words over Σ, the set of all words
that satisfy φ.)

How do we extend this to MSO formulas? Notice that in order to evaluate a formula with
a free second order variable X we need to associate a set of positions with X. We could use
the decorating technique and simply decorate each position that belongs to the set associated
with X by X. Of course, there might be no positions decorated with X, indicating that X

is the empty set.
For instance, consider the formula a(x) ∧ (x ∈ X) ∧ (y ∈ X). The following decorated

word, where x is assigned position 2, y is assigned position 5 and X is assigned the set
{2, 3, 5} of positions, satisfies this formula.

b a c a b c

x y

X X X

On the other hand,
b a c a b c

x y

X X

does not.
Extending the idea used for FO, we define (V, W)-words to be words over the alphabet

Σ × 2V × 2W that describe positions for the variables in V and sets of positions for the
variables in W . Formally, a word (a1, U1, W1)(a2, U2, W2) . . . (ak, Uk, Wk) is a (V, W)-word if
it satisfies:

1. Ui ∩ Uj = ∅ for i 6= j.

2.
⋃

1≤i≤k Ui = V .

Thus, given a formula φ whose set of first order free variables free1(φ) is contained in V

and whose set of second order free variables free2(φ) is contained in W , and a (V, W)-word
w we can define, in the obvious way, whether w satisfies φ (a formal definition is given in
the appendix). Thus, such a formula, defines a language of (V, W)-words.

We shall show, by induction on the structure of the formula φ that the language (V, W)-
words defined by φ for any V, W with free1(φ) ⊆ V and free2(φ) ⊆ W is a regular language
over Σ × 2V × 2W .

It is quite easy to write down a finite automaton that accepts the language of all (V, W)-
words. Since regular languages are closed under intersection, in what follows we will assume
that only valid (V, W)-words are considered as valid input.

2

For the basis, we consider the atomic formulas. There are three choices a(x), x < y and
x ∈ X. Here is an automaton that accepts (V, W)-words that satisfy a(x).

(a,F ,_)x
(_,_,_) (_,_,_)

where a stands for “any” and Fx is any subset of V that contains x. Similarly, an automaton
that accepts x < y is the following:

(_,F ,_)x (_,F ,_)y
(_,_,_)

(_,_,_)

(_,_,_)

where Fy is any subset of V that contains y. Finally, here is an automaton that accepts any
(V, W)-word that satisfies x ∈ X,

(a,F ,S)x X
(_,_,_) (_,_,_)

where SX is any subset of W that contains X. Note, that the correctness of these three
automata relies on the fact that the input consists only of (V, W)-words, but we can always
ensure this by taking the product of this automaton with any finite automaton accepting
the set of (V, W)-words.

For the induction step, we need to consider the various choices of logical operators. If
φ = α∧ β then, by induction hypothesis we have automata for the languages accepted by α

and β and we know that finite automata are closed under language intersection. Similarly if
φ = ¬α, we can complement the automaton recognising the set of (V, W)-words satisfying
α (and intersect it with the set of valid (V, W)-words). The other operators like ∨ and ⇒
can be expressed using ∧ and ¬. Thus we are left with the quantifiers. Note that ∀x.φ(x)
is ¬(∃x.¬φ(x)) and thus it suffices to consider the first order and second order existential
quantifiers.

Suppose free1(∃x.φ) ⊆ V and free2(∃x.φ) ⊆ W . Then, free1(φ) ⊆ V ∪{x} and free2(φ) ⊆
W . Therefore, by the induction hypothesis, the set of (V ∪ {x}, W)-words that satisfy φ is
a regular language. Further, it is quite easy to see that if

a1 a2 . . . ai . . . ak

F1 F2 . . . Fi ∪ {x} . . . Fk

S1 S2 . . . Si . . . Sk

3

satisfies φ then
a1 a2 . . . ai . . . ak

F1 F2 . . . Fi . . . Fk

S1 S2 . . . Si . . . Sk

satisfied ∃x.φ (simply choose x to be the position i). Conversely, when

a1 a2 . . . ak

F1 F2 . . . Fk

S1 S2 . . . Sk

satisfies ∃x.φ then, then there is a choice of position, say i, for x such that φ is satisfied
w.r.t. to this assignment and thus,

a1 a2 . . . ai . . . ak

F1 F2 . . . Fi ∪ {x} . . . Fk

S1 S2 . . . Si . . . Sk

satisfies φ. Thus, set of (V, W)-words that satisfy ∃x.φ are just the images of the set of
(V ∪ {x}, W)-words that satisfy φ under the homomorphism h defined by h((a, F, S)) =
(a, F \ {x}, S). Since, regular languages are closed under homomorphic images, we conclude
that the set of (V, W)-words satisfying ∃x.φ is a regular language.

The proof in case of ∃X.φ is almost identical. In this case, the set of (V, W)-words that
satisfy ∃X.φ are just the images of the set of (V, W ∪ {X})-words that satisfy φ under the
homomorphism h defined by h((a, F, S)) = (a, F, S \ {x}). Thus the set of words satisfying
∃X.φ forms a regular language.

Thus we have proved that whenever free1(φ) ⊆ V and free2(φ) ⊆ W , the set of (V, W)-
words that satisfy φ is a regular language over Σ × 2V × 2W . Thus, if φ is a sentence then
the set of (∅, ∅)-words that satisfy φ is a regular language over Σ × 2∅ × 2∅ (and this is the
same as the language over Σ, via the bijection that sends (a, ∅, ∅) to a).

Thus, we have established both directions of Büchi’s theorem.

1 Stratification of FO formulas

We now turn our attention to showing that the language of words with even number of
as is not definable in the first-order logic of words. We define the quantifier depth of a
f.o. formula φ as follows: if φ is quantifier-free than qd(φ) = 0. Otherwise, qd(φ ∧ φ′) =
maximum(qd(φ, φ′), qd(¬φ) = qd(φ) and qd(∃x.φ) = qd(φ) + 1.

Now, if we fix a finite set F of variables, there are only finitely many quantifier-free
formulas over F upto logical equivalence. Simply rewrite the formula into its equivalent
disjunctive normal form (i.e. a formula of the form P1 ∨ P2 ∨ . . . Pk where each Pi = A1 ∧
A2∧ . . . Aki

is a conjunction of literals (i.e. each Ai is either a atomic formula or the negation
of an atomic formula) and use the fact that φ ∧ φ = φ and φ ∨ φ = φ.

4

Next, observe that qd(i + 1) formulas are just boolean combinations of formulas with
quantifier depth <= i and formulas of the form ∃x.φ where qd(φ) ≤ i. Thus, if the number
of formulas (upto logical equivalence) of quantifier depth i or less is finite then the number
of formulas with quantifier depth i + 1 or less is also finite.

The previous two paragraphs (when formalise appropriately!) yields the following theo-
rem.

Theorem 1 For any i there are only finitely many formulas of quantifier depth i or less
(upto logical equivalence).

Thus, we can stratify first order definable languages via the quantifier depth necessary
to define a language. One method to show that a particular to language is not first order
definable is to show that for each k, no sentence of quantifier depth k can define the language.
This is the route we shall take in order to show that evenness is not first order definable.

This leads us to the natural question: How do we show that a language is not definable
via sentences of quantifier depth k? Well, this is done by finding two words w and w′, one in
the language and another outside the language and show that these cannot be distinguished
by sentences of quantifier depth k or less. That is, we show that for each sentence φ of
quantifier depth k or less, either both w and w′ satisfy φ or neither satisfies φ.

Thus we move on to the following question: Given two words w and w′ how do we decide
whether there is a sentence of quantifer depth k (or less) that distinguishes w from w′? It
is here that Ehrenfeucht-Fraisse games play their role. Given w,w′ and k we set up a game
between two players 0 and 1 (the cynic and the believer) such that w is distinguishable from
w′ by some sentence of quantifier depth k or less if and only the player 0 has a winning
strategy in the game.

1.1 Ehrenfeucht-Fraisse Games

Let w and w′ be two V -words and let k be some positive integer. There are k-rounds in
the game. In each round, say round i, player 0 (who is trying to show that these two words
are distinguishable) picks one of the two words and a position in that word and labels it
with a new variable xi. Player 1 must then pick the other word (the one not picked by
player 0), and label one of its positions with xi. Thus, at the end of k rounds we have two
V ∪ {x1, . . . xk}-words. Player 0 wins the game if there is some quantifier-free formula (over
V ∪ {x1, . . . , xk}) that distinguishes these two words. Otherwise player 1 wins the game.
Notice that this forces player 1 to try and duplicate player 0’s moves as closely as possible
so that the labellings are indistinguisable via atomic propositions.

We say that two V -words w and w′ are k-equivalent if player 1 has a winning strategy to
win the k round game on w and w′. We write w ≡k w′ to indicate this. On the logical side,
we say that two V -words w and w′ are k-indistinguishable if no quantifier depth k formula
with free variables in the set V can distinguish between these two words. We write w ∼k w′

to indicate this.
Here is a 2 round game played on the words w = abbabbab and w′ = ababbabb. Player 0

picks w′ and labels position 7 with x1.

5

ba b a b b a b
x1

x1 x2

ba a b b a b b

Now, player 1 must pick some position, with a b, and to represent the “equivalent” in w of
position 7 in w′. But this is doomed to fail.

If player 1 picks position 8 then in the second round player 0 would pick position 8 in
w′ and this leaves us at the following situation: Now, no matter where player 1 places x2 it
would violate atomic formula x1 < x2 satisfied by w′.

On the other hand, if player 1 picks any position other than 8, then player 0 would pick
w in the second round and label position 7 with x2. Here is the result (where player 1 played
position 6 in the first round):

ba b a b b a b
x1

x1

x2

ba a b b a b b

Once again, no matter where player 1 places x2 it would violate the formula a(x2)∧(x1 < x2)
satisfied by w. Here is a formlula of quantifier depth 2 that distinguishes these two words:
∃x1. b(x1) ∧ (∃x2. x1 < x2) ∧ ∀x2.(x2 > x1) ⇒ ¬a(x2). The word w′ satisfies this formula
with x1 instantiated as position 7. Further note that ∃x2. x1 < x2 translates the strategy
against player 1 playing position 8 in round 1 and ∀x2.(x2 > x1) ⇒ ¬a(x2) translates the
strategy against player 1 playing any other position in round 1. This ability to translate a k

round winning strategy to a distinguishing formula of quantfier depth k is not a coincidence.

Lemma 2 Let w and w′ be two V -words such that player 0 has a winning strategy in the
k round game. Then, there is a formula φ (with free variables in V) with quantifier depth
bounded by k that is satisfied by w and not by w′.

Proof: Let w = (a1, V1)(a2, V2) . . . (am, Vm) and w′ = (a′
1, V

′
1)(a

′
2, V

′
2) . . . (a′

n, V
′
n). The proof

proceeds by induction on k. If k = 0 then, by definition there is a quantifier-free formula
that distinguishes w and w′ and this serves as the base case. Suppose the results holds if the
number of rounds is less than k.

Now, consider the winning strategy for player 0 that wins the k round game. Suppose
this move picks the position i in word w and labels it with variable x. Therefore, any position
j in w′ as the choice for player 1’s move is a loosing move (i.e. player 0 can continue the
game so as to win it.) This is equivalent to saying that player 0 has a winning strategy
in the k − 1 round game played on the words u = (a1, V1) . . . (ai, Vi ∪ {x}) . . . (am, Vm) and
u′

j = (a′
1, V

′
1) . . . (a′

j , V
′
j ∪{x}) . . . (a′

n, V ′
n) for each j. Thus, by the induction hypothesis there

is a formula φj, with quantifier depth bounded by k − 1, such that u |= φj and u′
j 6|= φj.

6

Thus, w |= ∃x.
∧

1≤j≤n φj (Simply set x to be i). On the other hand w′ 6|= ∃x.
∧

1≤j≤n φj.
Thus, we have constructed a formula of quantifier depth bounded by k that is satisfied by
w and not by w′.

Notes: Our presentation has followed the notation used in Straubing [2]. Another book
that presents these results is Pippinger [1].

References

[1] Nick Pippenger: Theories of Computability, Cambridge University Press, 1997.

[2] Howard Straubing: Finite Automata, Formal Logic and Circuit Complexity, Birkhäuser,
1994.

Appendix:

Given a word w = a1a2 . . . an a (V, W)-valuation over w is a function σ that maps V to
{1, 2, . . . n} and W to 2{1,2,...,n}. Given a word w = a1a2 . . . an and a (V, W)-valuation σ with
free1(φ) ⊆ V and free2(φ) ⊆ W , we define when (a1a2 . . . an, σ) satisfies a formula φ, written
a1a2 . . . an, σ |= φ, as follows:

a1a2 . . . an, σ |= a(x) if aσ(x) = a

a1a2 . . . an, σ |= x < y if σ(x) < σ(y)
a1a2 . . . an, σ |= x ∈ X if σ(x) ∈ σ(X)
a1a2 . . . anσ |= φ ∧ φ′ if (a1a2 . . . an, σ |= φ) and (a1a2 . . . an, σ |= φ′)
a1a2 . . . an, σ |= ¬φ if (a1a2 . . . an, σ 6|= φ)
a1a2 . . . an, σ |= ∃x.φ if there is an i ∈ {1, 2, 3, . . . n} such a1a2 . . . an, σ[x : i] |= φ

a1a2 . . . an, σ |= ∃X.φ if there is S ⊆ {1, 2, 3, . . . n} such a1a2 . . . an, σ[X : S] |= φ

where σ[v : y](u) = σ(u) if u 6= v and σ[v : y](v) = y.

Given a (V, W)-word (a1, F1, S1)(a2, F2, S2) . . . (an, Fn, Sn) we can construct a word–valuation
pair (w, σ) by setting w = a1a2 . . . an and σ(x) = i if x ∈ Fi for any x ∈ V and σ(X) =
{i | X ∈ Si} for any X ∈ W . It is easy to check that this is a bijective correspondance be-
tween (V, W)-words and word-valuation pairs. We say that a (V, W)-word satisfies a formula
φ if and only if the corresponding word–valuation pair satisfies the formula φ.

7

