Lecture 3: MSO to Regular Languages

To describe the translation from MSO formulas to regular languages one has to be a
bit more formal! All the examples we used in the previous class were sentences i.e., every
variable that occured in the formula occured within the scope of a quantifier. (A variable
that is tied to quantifier is called a bound variable. Every variable in a sentence is a bound
variable.) Given a sentence ¢, any word w either satisfies ¢ or does not.

However, in order to reason about sentences, one has to reason about subformulas of
sentences and these need not be sentences. As a matter of fact, subformulas of sentences are
usually NOT sentences.

For example, consider formulas First(x) and y = = + 1 that were used repeatedly in the
previous lecture. The former has x as a free variable while the latter has x and y as free
variables. A free variable is one that is not “captured” by a quantifier. It does not make
sense to ask if w satisfies First(x). Instead, one has to give a word w and a position 7 in the
word w and then one may ask if First(z) is true. Similarly to evaluate y = x + 1, one needs
values (i.e. positions) for the variables x and y before we can verify its truth.

For the moment let us restrict overselves to first order formulas. Then, to meaningfully
discuss the truth or falsity of a formula with k free variables, we need a word along with
assignment of positions to the k variables. For example, the formula ¢ = (z < y) Aa(x) Ab(y)
is true of bacabc with x assigned position 2 and y assigned position 5. We represent such a
word with assignments for x and y as a word decorated with the variables x and y as follows:

b a ¢ a b ¢
x Yy

On the other hand the formula ¢ is not true of bacabe if x and y are assigned position 5.

b a ¢ a b ¢

Y

Notice that these decorated words can themselves be thought of as words over the alpha-
bet ¥x 2" where V is the set of (free) variables. For instance, the two decorated models corre-
spond to the words (b, 0)(a, {x})(c, ®)(a, D) (b, {y})(c,0) and (b, 0)(a, D) (c, 0)(a, D)(b, {z,y})(c, D)
respectively. Often we shall a for (a, () and write b(a,{z})ca(b, {y})c and baca(b, {x,y})c
instead.

For the purposes of this lecture let us fix the basic alphabet to be X. Following Straubing
2], given a set V' of variables we define the set of V-words to be words over the alphabet
¥ x 2V to be those that describe a word over ¥ and indicate the positions of all the variables
V in the word. Formally, a V-word is a word (a1, Uy)(ag, Us) ... (ax, Uyx) where

1. U;nU; =0 fori # j.

2. UlSiSk UZ - V

Thus, a V-word associates a unique position of the underlying word, over the alphabet X,
with each variable in V.

Given a formula ¢ with all of its free variables (free(¢)) coming from V' and a V-word w
we can define whether w satisfies ¢ in the obvious way (A formal definition is given in the
appendix). Thus, if free(¢) C V then ¢ defines a language of V-words. (In particular, when
free(¢) is empty, the ¢ defines a language over the set of words over ¥, the set of all words
that satisfy ¢.)

How do we extend this to MSO formulas? Notice that in order to evaluate a formula with
a free second order variable X we need to associate a set of positions with X. We could use
the decorating technique and simply decorate each position that belongs to the set associated
with X by X. Of course, there might be no positions decorated with X, indicating that X
is the empty set.

For instance, consider the formula a(z) A (z € X) A (y € X). The following decorated
word, where x is assigned position 2, y is assigned position 5 and X is assigned the set
{2,3,5} of positions, satisfies this formula.

b a ¢ a b ¢

On the other hand,

does not.

Extending the idea used for FO, we define (V, W)-words to be words over the alphabet
¥ x 2¥ x 2% that describe positions for the variables in V' and sets of positions for the
variables in W. Formally, a word (ay, Uy, W1)(ag, Us, Wa) ... (ak, Ug, Wy) is a (V, W)-word if
it satisfies:

1. U;nU; =0 fori # j.

2. U1gz‘gk U =V.

Thus, given a formula ¢ whose set of first order free variables free;(¢) is contained in V'
and whose set of second order free variables frees(¢) is contained in W, and a (V, W)-word
w we can define, in the obvious way, whether w satisfies ¢ (a formal definition is given in
the appendix). Thus, such a formula, defines a language of (V, W)-words.

We shall show, by induction on the structure of the formula ¢ that the language (V, W)-
words defined by ¢ for any V, W with free;(¢) C V and frees(¢p) C W is a regular language
over ¥ x 2V x 2%,

It is quite easy to write down a finite automaton that accepts the language of all (V, W)-
words. Since regular languages are closed under intersection, in what follows we will assume
that only valid (V, W)-words are considered as valid input.

2

For the basis, we consider the atomic formulas. There are three choices a(z), z < y and
x € X. Here is an automaton that accepts (V, W)-words that satisfy a(x).

U
@k.J)

G ()

where a _stands for “any” and F}, is any subset of V' that contains x. Similarly, an automaton
that accepts z < y is the following:

» CCU s <5) G O)

where F), is any subset of V' that contains y. Finally, here is an automaton that accepts any
(V,W)-word that satisfies x € X,

(aF.Sy
G Q— Co)

where Sy is any subset of W that contains X. Note, that the correctness of these three
automata relies on the fact that the input consists only of (V, W)-words, but we can always
ensure this by taking the product of this automaton with any finite automaton accepting
the set of (V, W)-words.

For the induction step, we need to consider the various choices of logical operators. If
¢ = a A 3 then, by induction hypothesis we have automata for the languages accepted by «
and (8 and we know that finite automata are closed under language intersection. Similarly if
¢ = —a, we can complement the automaton recognising the set of (V, W)-words satisfying
a (and intersect it with the set of valid (V,W)-words). The other operators like V and =
can be expressed using A and —. Thus we are left with the quantifiers. Note that Vz.¢(x)
is =(Jz.—¢(x)) and thus it suffices to consider the first order and second order existential
quantifiers.

Suppose free; (Fz.¢) C V and freey(Jz.¢) C W. Then, free;(¢) C V U{x} and freey(¢) C
W. Therefore, by the induction hypothesis, the set of (V U {z}, W)-words that satisfy ¢ is
a regular language. Further, it is quite easy to see that if

a Qg ... G4 ... ag

satisfies ¢ then

a; Qo a; Q.
P F ... F R
S1 Sy ... S cee Sk

satisfied 3x.¢ (simply choose = to be the position 7). Conversely, when

a; Qo e Qg
B o0 F
Sl SQ Ce Sk

satisfies dx.¢ then, then there is a choice of position, say i, for x such that ¢ is satisfied
w.r.t. to this assignment and thus,

a; Qo a; Qg

satisfies ¢. Thus, set of (V,W)-words that satisfy Jx.¢ are just the images of the set of
(V U {z}, W)-words that satisfy ¢ under the homomorphism h defined by h((a, F,S)) =
(a, F\{z},5). Since, regular languages are closed under homomorphic images, we conclude
that the set of (V, W)-words satisfying Jz.¢ is a regular language.

The proof in case of 3X.¢ is almost identical. In this case, the set of (V, W)-words that
satisfy 3X.¢ are just the images of the set of (V,W U {X})-words that satisfy ¢ under the
homomorphism h defined by h((a, F,S)) = (a, F, S\ {z}). Thus the set of words satisfying
3X.¢ forms a regular language.

Thus we have proved that whenever free;(¢) C V and frees(¢) C W, the set of (V, W)-
words that satisfy ¢ is a regular language over ¥ x 2V x 2W. Thus, if ¢ is a sentence then
the set of (),))-words that satisfy ¢ is a regular language over ¥ x 2 x 2% (and this is the
same as the language over X, via the bijection that sends (a,(,0) to a).

Thus, we have established both directions of Biichi’s theorem.

1 Stratification of FO formulas

We now turn our attention to showing that the language of words with even number of
as is not definable in the first-order logic of words. We define the quantifier depth of a
f.o. formula ¢ as follows: if ¢ is quantifier-free than qd(¢) = 0. Otherwise, qd(¢ A ¢') =
maximum(qd(¢, ¢'), qd(—¢) = qd(¢) and qd(3z.¢) = qd(¢) + 1.

Now, if we fix a finite set F' of variables, there are only finitely many quantifier-free
formulas over F' upto logical equivalence. Simply rewrite the formula into its equivalent
disjunctive normal form (i.e. a formula of the form P, V P, V ... P, where each P, = A; A
Ay N. .. Ay, is a conjunction of literals (i.e. each A; is either a atomic formula or the negation
of an atomic formula) and use the fact that ¢ A ¢ = ¢ and ¢V ¢ = ¢.

Next, observe that qd(i + 1) formulas are just boolean combinations of formulas with
quantifier depth <= i and formulas of the form Jz.¢ where qd(¢) < i. Thus, if the number
of formulas (upto logical equivalence) of quantifier depth ¢ or less is finite then the number
of formulas with quantifier depth ¢ 4+ 1 or less is also finite.

The previous two paragraphs (when formalise appropriately!) yields the following theo-
rem.

Theorem 1 For any i there are only finitely many formulas of quantifier depth i or less
(upto logical equivalence).

Thus, we can stratify first order definable languages via the quantifier depth necessary
to define a language. One method to show that a particular to language is not first order
definable is to show that for each k, no sentence of quantifier depth k can define the language.
This is the route we shall take in order to show that evenness is not first order definable.

This leads us to the natural question: How do we show that a language is not definable
via sentences of quantifier depth &7 Well, this is done by finding two words w and w’, one in
the language and another outside the language and show that these cannot be distinguished
by sentences of quantifier depth k& or less. That is, we show that for each sentence ¢ of
quantifier depth k or less, either both w and w’ satisfy ¢ or neither satisfies ¢.

Thus we move on to the following question: Given two words w and w’ how do we decide
whether there is a sentence of quantifer depth & (or less) that distinguishes w from w'? It
is here that Ehrenfeucht-Fraisse games play their role. Given w,w’ and k we set up a game
between two players 0 and 1 (the cynic and the believer) such that w is distinguishable from
w’ by some sentence of quantifier depth k& or less if and only the player 0 has a winning
strategy in the game.

1.1 Ehrenfeucht-Fraisse Games

Let w and w’ be two V-words and let k& be some positive integer. There are k-rounds in
the game. In each round, say round i, player 0 (who is trying to show that these two words
are distinguishable) picks one of the two words and a position in that word and labels it
with a new variable x;. Player 1 must then pick the other word (the one not picked by
player 0), and label one of its positions with x;. Thus, at the end of k£ rounds we have two
V U{x,...x,}-words. Player 0 wins the game if there is some quantifier-free formula (over
V U{xy,...,x}) that distinguishes these two words. Otherwise player 1 wins the game.
Notice that this forces player 1 to try and duplicate player 0’s moves as closely as possible
so that the labellings are indistinguisable via atomic propositions.

We say that two V-words w and w’ are k-equivalent if player 1 has a winning strategy to
win the k& round game on w and w’. We write w =, w’ to indicate this. On the logical side,
we say that two V-words w and w’ are k-indistinguishable if no quantifier depth k& formula
with free variables in the set V' can distinguish between these two words. We write w ~y, w’
to indicate this.

Here is a 2 round game played on the words w = abbabbab and w’ = ababbabb. Player 0
picks w’ and labels position 7 with x;.

a b b a b b a b
X1

a b a b b ab b
X, X,

Now, player 1 must pick some position, with a b, and to represent the “equivalent” in w of
position 7 in w’. But this is doomed to fail.

If player 1 picks position 8 then in the second round player 0 would pick position 8 in
w’ and this leaves us at the following situation: Now, no matter where player 1 places x5 it
would violate atomic formula x; < x5 satisfied by w’.

On the other hand, if player 1 picks any position other than 8, then player 0 would pick
w in the second round and label position 7 with z5. Here is the result (where player 1 played
position 6 in the first round):

a b b a b b a b
X, X,

a b a b b ab b
X1

Once again, no matter where player 1 places x5 it would violate the formula a(z2) A (21 < x2)
satisfied by w. Here is a formlula of quantifier depth 2 that distinguishes these two words:
dzy. b(x1) A (Fzg. 21 < x9) AVag.(z2 > 1) = —a(xz). The word w' satisfies this formula
with x; instantiated as position 7. Further note that dz,. 1 < x, translates the strategy
against player 1 playing position 8 in round 1 and Vz,.(zy > x1) = —a(xs) translates the
strategy against player 1 playing any other position in round 1. This ability to translate a &
round winning strategy to a distinguishing formula of quantfier depth k is not a coincidence.

Lemma 2 Let w and w' be two V-words such that player 0 has a winning strategy in the
k round game. Then, there is a formula ¢ (with free variables in V') with quantifier depth
bounded by k that is satisfied by w and not by w'.

Proof: Let w = (a1, V1)(ag, V2) ... (am, Vin) and w' = (a7, V{)(ay, V3) ... (al,, V!). The proof
proceeds by induction on k. If £ = 0 then, by definition there is a quantifier-free formula
that distinguishes w and w’” and this serves as the base case. Suppose the results holds if the
number of rounds is less than k.

Now, consider the winning strategy for player 0 that wins the k round game. Suppose
this move picks the position 7 in word w and labels it with variable x. Therefore, any position
j in w' as the choice for player 1’s move is a loosing move (i.e. player 0 can continue the
game so as to win it.) This is equivalent to saying that player 0 has a winning strategy
in the &£ — 1 round game played on the words u = (aq, V1) ... (a;, V; U{z})...(am, V;) and
u; = (a1, V{) ... (a}, V;U{z}) ... (a,,V,) for each j. Thus, by the induction hypothesis there

j
is a formula ¢;, with quantifier depth bounded by k — 1, such that u = ¢; and u} |~ ¢;.

6

Thus, w = 3z. A, <, ¢; (Simply set z to be i). On the other hand w’ j~ 3. A, ¢;.
Thus, we have constructed a formula of quantifier depth bounded by £ that is satisfied by
w and not by w'. m

Notes: Our presentation has followed the notation used in Straubing [2]. Another book
that presents these results is Pippinger [1].

References

[1] Nick Pippenger: Theories of Computability, Cambridge University Press, 1997.

[2] Howard Straubing: Finite Automata, Formal Logic and Circuit Complezity, Birkhauser,
1994.

Appendix:

Given a word w = ajas...a, a (V,W)-valuation over w is a function o that maps V' to
{1,2,...n} and W to 2t42-"} Given a word w = ajas . .. a, and a (V, W)-valuation o with
free;(¢) C V and frees(¢p) C W, we define when (ajas . . . a,, o) satisfies a formula ¢, written
aas . ..a,,0 = ¢, as follows:

aias . ..0an,0
ai1as . ..an,0
a1as . ..0an,0
a1asy . ..a,0

aiag...04n,0
ajag...04n,0
a1as . ..0an,0

a(z) if age) =a
r<y ifo(z) <o(y)
reX ifo(x)€o
oA if (aas...an,0 = ¢) and (a1as...a,,0 = @)

—¢ if (ajay...an, 0 - @)

dr.¢ if thereisan i € {1,2,3,...n} such ayas...a,,0[x :i] | ¢
dX.¢ if thereis S C {1,2,3,...n} such a1as...a,,0[X : S] = ¢

T

where ov : y|(u) = o(u) if u # v and ofv : y|(v) = y.

Given a (V, W)-word (a1, F1, S1)(ag, Fy, S2) ... (an, Fy, Sy) we can construct a word-valuation
pair (w, o) by setting w = ajas...a, and o(z) =i if v € F; for any z € V and o(X) =
{i | X € S;} for any X € W. It is easy to check that this is a bijective correspondance be-
tween (V, W)-words and word-valuation pairs. We say that a (V, W)-word satisfies a formula
¢ if and only if the corresponding word—valuation pair satisfies the formula ¢.

