Lecture 3: MSO to Regular Languages

To describe the translation from MSO formulas to regular languages one has to be a bit more formal! All the examples we used in the previous class were sentences i.e., every variable that occured in the formula occured within the scope of a quantifier. (A variable that is tied to quantifier is called a bound variable. Every variable in a sentence is a bound variable.) Given a sentence ϕ, any word w either satisfies ϕ or does not.

However, in order to reason about sentences, one has to reason about subformulas of sentences and these need not be sentences. As a matter of fact, subformulas of sentences are usually NOT sentences.

For example, consider formulas First (x) and $y=x+1$ that were used repeatedly in the previous lecture. The former has x as a free variable while the latter has x and y as free variables. A free variable is one that is not "captured" by a quantifier. It does not make sense to ask if w satisfies $\operatorname{First}(x)$. Instead, one has to give a word w and a position i in the word w and then one may ask if $\operatorname{First}(i)$ is true. Similarly to evaluate $y=x+1$, one needs values (i.e. positions) for the variables x and y before we can verify its truth.

For the moment let us restrict overselves to first order formulas. Then, to meaningfully discuss the truth or falsity of a formula with k free variables, we need a word along with assignment of positions to the k variables. For example, the formula $\phi=(x<y) \wedge a(x) \wedge b(y)$ is true of bacabc with x assigned position 2 and y assigned position 5 . We represent such a word with assignments for x and y as a word decorated with the variables x and y as follows:

$$
\begin{array}{llllll}
b & a & c & a & b & c \\
& x & & & y &
\end{array}
$$

On the other hand the formula ϕ is not true of bacabc if x and y are assigned position 5 .

Notice that these decorated words can themselves be thought of as words over the alphabet $\Sigma \times 2^{V}$ where V is the set of (free) variables. For instance, the two decorated models correspond to the words $(b, \emptyset)(a,\{x\})(c, \emptyset)(a, \emptyset)(b,\{y\})(c, \emptyset)$ and $(b, \emptyset)(a, \emptyset)(c, \emptyset)(a, \emptyset)(b,\{x, y\})(c, \emptyset)$ respectively. Often we shall a for (a, \emptyset) and write $b(a,\{x\}) c a(b,\{y\}) c$ and $b a c a(b,\{x, y\}) c$ instead.

For the purposes of this lecture let us fix the basic alphabet to be Σ. Following Straubing [2], given a set V of variables we define the set of V-words to be words over the alphabet $\Sigma \times 2^{V}$ to be those that describe a word over Σ and indicate the positions of all the variables V in the word. Formally, a V-word is a word $\left(a_{1}, U_{1}\right)\left(a_{2}, U_{2}\right) \ldots\left(a_{k}, U_{k}\right)$ where

1. $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$.
2. $\bigcup_{1 \leq i \leq k} U_{i}=V$.

Thus, a V-word associates a unique position of the underlying word, over the alphabet Σ, with each variable in V.

Given a formula ϕ with all of its free variables (free (ϕ)) coming from V and a V-word w we can define whether w satisfies ϕ in the obvious way (A formal definition is given in the appendix). Thus, if free $(\phi) \subseteq V$ then ϕ defines a language of V-words. (In particular, when free (ϕ) is empty, the ϕ defines a language over the set of words over Σ, the set of all words that satisfy ϕ.)

How do we extend this to MSO formulas? Notice that in order to evaluate a formula with a free second order variable X we need to associate a set of positions with X. We could use the decorating technique and simply decorate each position that belongs to the set associated with X by X. Of course, there might be no positions decorated with X, indicating that X is the empty set.

For instance, consider the formula $a(x) \wedge(x \in X) \wedge(y \in X)$. The following decorated word, where x is assigned position 2, y is assigned position 5 and X is assigned the set $\{2,3,5\}$ of positions, satisfies this formula.

On the other hand,

$$
\begin{array}{llllll}
b & a & c & a & b & c \\
& x & & & y & \\
& & X & & X &
\end{array}
$$

does not.
Extending the idea used for FO, we define (V, W)-words to be words over the alphabet $\Sigma \times 2^{V} \times 2^{W}$ that describe positions for the variables in V and sets of positions for the variables in W. Formally, a word $\left(a_{1}, U_{1}, W_{1}\right)\left(a_{2}, U_{2}, W_{2}\right) \ldots\left(a_{k}, U_{k}, W_{k}\right)$ is a (V, W)-word if it satisfies:

1. $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$.
2. $\bigcup_{1 \leq i \leq k} U_{i}=V$.

Thus, given a formula ϕ whose set of first order free variables free ${ }_{1}(\phi)$ is contained in V and whose set of second order free variables free $2_{2}(\phi)$ is contained in W, and a (V, W)-word w we can define, in the obvious way, whether w satisfies ϕ (a formal definition is given in the appendix). Thus, such a formula, defines a language of (V, W)-words.

We shall show, by induction on the structure of the formula ϕ that the language (V, W) words defined by ϕ for any V, W with free $_{1}(\phi) \subseteq V$ and free $_{2}(\phi) \subseteq W$ is a regular language over $\Sigma \times 2^{V} \times 2^{W}$.

It is quite easy to write down a finite automaton that accepts the language of all (V, W) words. Since regular languages are closed under intersection, in what follows we will assume that only valid (V, W)-words are considered as valid input.

For the basis, we consider the atomic formulas. There are three choices $a(x), x<y$ and $x \in X$. Here is an automaton that accepts (V, W)-words that satisfy $a(x)$.

where a _ stands for "any" and F_{x} is any subset of V that contains x. Similarly, an automaton that accepts $x<y$ is the following:

where F_{y} is any subset of V that contains y. Finally, here is an automaton that accepts any (V, W)-word that satisfies $x \in X$,

where S_{X} is any subset of W that contains X. Note, that the correctness of these three automata relies on the fact that the input consists only of (V, W)-words, but we can always ensure this by taking the product of this automaton with any finite automaton accepting the set of (V, W)-words.

For the induction step, we need to consider the various choices of logical operators. If $\phi=\alpha \wedge \beta$ then, by induction hypothesis we have automata for the languages accepted by α and β and we know that finite automata are closed under language intersection. Similarly if $\phi=\neg \alpha$, we can complement the automaton recognising the set of (V, W)-words satisfying α (and intersect it with the set of valid (V, W)-words). The other operators like \vee and \Rightarrow can be expressed using \wedge and \neg. Thus we are left with the quantifiers. Note that $\forall x \cdot \phi(x)$ is $\neg(\exists x . \neg \phi(x))$ and thus it suffices to consider the first order and second order existential quantifiers.

Suppose free $1(\exists x \cdot \phi) \subseteq V$ and free $2(\exists x \cdot \phi) \subseteq W$. Then, free $(\phi) \subseteq V \cup\{x\}$ and free ${ }_{2}(\phi) \subseteq$ W. Therefore, by the induction hypothesis, the set of $(V \cup\{x\}, W)$-words that satisfy ϕ is a regular language. Further, it is quite easy to see that if

$$
\begin{array}{cccccc}
a_{1} & a_{2} & \ldots & a_{i} & \ldots & a_{k} \\
F_{1} & F_{2} & \ldots & F_{i} \cup\{x\} & \ldots & F_{k} \\
S_{1} & S_{2} & \ldots & S_{i} & \ldots & S_{k}
\end{array}
$$

satisfies ϕ then

$$
\begin{array}{cccccc}
a_{1} & a_{2} & \ldots & a_{i} & \ldots & a_{k} \\
F_{1} & F_{2} & \ldots & F_{i} & \ldots & F_{k} \\
S_{1} & S_{2} & \ldots & S_{i} & \ldots & S_{k}
\end{array}
$$

satisfied $\exists x . \phi$ (simply choose x to be the position i). Conversely, when

$$
\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{k} \\
F_{1} & F_{2} & \ldots & F_{k} \\
S_{1} & S_{2} & \ldots & S_{k}
\end{array}
$$

satisfies $\exists x \cdot \phi$ then, then there is a choice of position, say i, for x such that ϕ is satisfied w.r.t. to this assignment and thus,

$$
\begin{array}{cccccc}
a_{1} & a_{2} & \ldots & a_{i} & \ldots & a_{k} \\
F_{1} & F_{2} & \ldots & F_{i} \cup\{x\} & \ldots & F_{k} \\
S_{1} & S_{2} & \ldots & S_{i} & \ldots & S_{k}
\end{array}
$$

satisfies ϕ. Thus, set of (V, W)-words that satisfy $\exists x . \phi$ are just the images of the set of $(V \cup\{x\}, W)$-words that satisfy ϕ under the homomorphism h defined by $h((a, F, S))=$ ($a, F \backslash\{x\}, S$). Since, regular languages are closed under homomorphic images, we conclude that the set of (V, W)-words satisfying $\exists x \cdot \phi$ is a regular language.

The proof in case of $\exists X . \phi$ is almost identical. In this case, the set of (V, W)-words that satisfy $\exists X . \phi$ are just the images of the set of $(V, W \cup\{X\})$-words that satisfy ϕ under the homomorphism h defined by $h((a, F, S))=(a, F, S \backslash\{x\})$. Thus the set of words satisfying $\exists X . \phi$ forms a regular language.

Thus we have proved that whenever free $_{1}(\phi) \subseteq V$ and free $_{2}(\phi) \subseteq W$, the set of (V, W) words that satisfy ϕ is a regular language over $\Sigma \times 2^{V} \times 2^{W}$. Thus, if ϕ is a sentence then the set of (\emptyset, \emptyset)-words that satisfy ϕ is a regular language over $\Sigma \times 2^{\emptyset} \times 2^{\emptyset}$ (and this is the same as the language over Σ, via the bijection that sends $(a, \emptyset, \emptyset)$ to $a)$.

Thus, we have established both directions of Büchi's theorem.

1 Stratification of FO formulas

We now turn our attention to showing that the language of words with even number of as is not definable in the first-order logic of words. We define the quantifier depth of a f.o. formula ϕ as follows: if ϕ is quantifier-free than $\operatorname{qd}(\phi)=0$. Otherwise, $\operatorname{qd}\left(\phi \wedge \phi^{\prime}\right)=$ $\operatorname{maximum}\left(\operatorname{qd}\left(\phi, \phi^{\prime}\right), \operatorname{qd}(\neg \phi)=\operatorname{qd}(\phi)\right.$ and $\operatorname{qd}(\exists x \cdot \phi)=\operatorname{qd}(\phi)+1$.

Now, if we fix a finite set F of variables, there are only finitely many quantifier-free formulas over F upto logical equivalence. Simply rewrite the formula into its equivalent disjunctive normal form (i.e. a formula of the form $P_{1} \vee P_{2} \vee \ldots P_{k}$ where each $P_{i}=A_{1} \wedge$ $A_{2} \wedge \ldots A_{k_{i}}$ is a conjunction of literals (i.e. each A_{i} is either a atomic formula or the negation of an atomic formula) and use the fact that $\phi \wedge \phi=\phi$ and $\phi \vee \phi=\phi$.

Next, observe that $\mathrm{qd}(i+1)$ formulas are just boolean combinations of formulas with quantifier depth $<=i$ and formulas of the form $\exists x \cdot \phi$ where $\mathrm{qd}(\phi) \leq i$. Thus, if the number of formulas (upto logical equivalence) of quantifier depth i or less is finite then the number of formulas with quantifier depth $i+1$ or less is also finite.

The previous two paragraphs (when formalise appropriately!) yields the following theorem.

Theorem 1 For any i there are only finitely many formulas of quantifier depth i or less (upto logical equivalence).

Thus, we can stratify first order definable languages via the quantifier depth necessary to define a language. One method to show that a particular to language is not first order definable is to show that for each k, no sentence of quantifier depth k can define the language. This is the route we shall take in order to show that evenness is not first order definable.

This leads us to the natural question: How do we show that a language is not definable via sentences of quantifier depth k ? Well, this is done by finding two words w and w^{\prime}, one in the language and another outside the language and show that these cannot be distinguished by sentences of quantifier depth k or less. That is, we show that for each sentence ϕ of quantifier depth k or less, either both w and w^{\prime} satisfy ϕ or neither satisfies ϕ.

Thus we move on to the following question: Given two words w and w^{\prime} how do we decide whether there is a sentence of quantifer depth k (or less) that distinguishes w from w^{\prime} ? It is here that Ehrenfeucht-Fraisse games play their role. Given w, w^{\prime} and k we set up a game between two players 0 and 1 (the cynic and the believer) such that w is distinguishable from w^{\prime} by some sentence of quantifier depth k or less if and only the player 0 has a winning strategy in the game.

1.1 Ehrenfeucht-Fraisse Games

Let w and w^{\prime} be two V-words and let k be some positive integer. There are k-rounds in the game. In each round, say round i, player 0 (who is trying to show that these two words are distinguishable) picks one of the two words and a position in that word and labels it with a new variable x_{i}. Player 1 must then pick the other word (the one not picked by player 0), and label one of its positions with x_{i}. Thus, at the end of k rounds we have two $V \cup\left\{x_{1}, \ldots x_{k}\right\}$-words. Player 0 wins the game if there is some quantifier-free formula (over $\left.V \cup\left\{x_{1}, \ldots, x_{k}\right\}\right)$ that distinguishes these two words. Otherwise player 1 wins the game. Notice that this forces player 1 to try and duplicate player 0's moves as closely as possible so that the labellings are indistinguisable via atomic propositions.

We say that two V-words w and w^{\prime} are k-equivalent if player 1 has a winning strategy to win the k round game on w and w^{\prime}. We write $w \equiv_{k} w^{\prime}$ to indicate this. On the logical side, we say that two V-words w and w^{\prime} are k-indistinguishable if no quantifier depth k formula with free variables in the set V can distinguish between these two words. We write $w \sim_{k} w^{\prime}$ to indicate this.

Here is a 2 round game played on the words $w=a b b a b b a b$ and $w^{\prime}=a b a b b a b b$. Player 0 picks w^{\prime} and labels position 7 with x_{1}.
$a \quad b \quad b \quad a \quad b \quad b \quad a \quad b$
$a \quad b \quad a \quad b \quad b \quad a \quad b \quad b$

Now, player 1 must pick some position, with a b, and to represent the "equivalent" in w of position 7 in w^{\prime}. But this is doomed to fail.

If player 1 picks position 8 then in the second round player 0 would pick position 8 in w^{\prime} and this leaves us at the following situation: Now, no matter where player 1 places x_{2} it would violate atomic formula $x_{1}<x_{2}$ satisfied by w^{\prime}.

On the other hand, if player 1 picks any position other than 8 , then player 0 would pick w in the second round and label position 7 with x_{2}. Here is the result (where player 1 played position 6 in the first round):

Once again, no matter where player 1 places x_{2} it would violate the formula $a\left(x_{2}\right) \wedge\left(x_{1}<x_{2}\right)$ satisfied by w. Here is a formlula of quantifier depth 2 that distinguishes these two words: $\exists x_{1} . b\left(x_{1}\right) \wedge\left(\exists x_{2} . x_{1}<x_{2}\right) \wedge \forall x_{2} .\left(x_{2}>x_{1}\right) \Rightarrow \neg a\left(x_{2}\right)$. The word w^{\prime} satisfies this formula with x_{1} instantiated as position 7. Further note that $\exists x_{2} . x_{1}<x_{2}$ translates the strategy against player 1 playing position 8 in round 1 and $\forall x_{2} .\left(x_{2}>x_{1}\right) \Rightarrow \neg a\left(x_{2}\right)$ translates the strategy against player 1 playing any other position in round 1 . This ability to translate a k round winning strategy to a distinguishing formula of quantfier depth k is not a coincidence.

Lemma 2 Let w and w^{\prime} be two V-words such that player 0 has a winning strategy in the k round game. Then, there is a formula ϕ (with free variables in V) with quantifier depth bounded by k that is satisfied by w and not by w^{\prime}.

Proof: Let $w=\left(a_{1}, V_{1}\right)\left(a_{2}, V_{2}\right) \ldots\left(a_{m}, V_{m}\right)$ and $w^{\prime}=\left(a_{1}^{\prime}, V_{1}^{\prime}\right)\left(a_{2}^{\prime}, V_{2}^{\prime}\right) \ldots\left(a_{n}^{\prime}, V_{n}^{\prime}\right)$. The proof proceeds by induction on k. If $k=0$ then, by definition there is a quantifier-free formula that distinguishes w and w^{\prime} and this serves as the base case. Suppose the results holds if the number of rounds is less than k.

Now, consider the winning strategy for player 0 that wins the k round game. Suppose this move picks the position i in word w and labels it with variable x. Therefore, any position j in w^{\prime} as the choice for player 1's move is a loosing move (i.e. player 0 can continue the game so as to win it.) This is equivalent to saying that player 0 has a winning strategy in the $k-1$ round game played on the words $u=\left(a_{1}, V_{1}\right) \ldots\left(a_{i}, V_{i} \cup\{x\}\right) \ldots\left(a_{m}, V_{m}\right)$ and $u_{j}^{\prime}=\left(a_{1}^{\prime}, V_{1}^{\prime}\right) \ldots\left(a_{j}^{\prime}, V_{j}^{\prime} \cup\{x\}\right) \ldots\left(a_{n}^{\prime}, V_{n}^{\prime}\right)$ for each j. Thus, by the induction hypothesis there is a formula ϕ_{j}, with quantifier depth bounded by $k-1$, such that $u \models \phi_{j}$ and $u_{j}^{\prime} \not \models \phi_{j}$.

Thus, $w \models \exists x$. $\bigwedge_{1 \leq j \leq n} \phi_{j}$ (Simply set x to be i). On the other hand $w^{\prime} \not \models \exists x$. $\bigwedge_{1 \leq j \leq n} \phi_{j}$. Thus, we have constructed a formula of quantifier depth bounded by k that is satisfied by w and not by w^{\prime}.

Notes: Our presentation has followed the notation used in Straubing [2]. Another book that presents these results is Pippinger [1].

References

[1] Nick Pippenger: Theories of Computability, Cambridge University Press, 1997.
[2] Howard Straubing: Finite Automata, Formal Logic and Circuit Complexity, Birkhäuser, 1994.

Appendix:

Given a word $w=a_{1} a_{2} \ldots a_{n}$ a (V, W)-valuation over w is a function σ that maps V to $\{1,2, \ldots n\}$ and W to $2^{\{1,2, \ldots, n\}}$. Given a word $w=a_{1} a_{2} \ldots a_{n}$ and a (V, W)-valuation σ with free $_{1}(\phi) \subseteq V$ and free ${ }_{2}(\phi) \subseteq W$, we define when $\left(a_{1} a_{2} \ldots a_{n}, \sigma\right)$ satisfies a formula ϕ, written $a_{1} a_{2} \ldots a_{n}, \sigma \models \phi$, as follows:

$$
\begin{array}{rll}
a_{1} a_{2} \ldots a_{n}, \sigma & \models a(x) & \text { if } a_{\sigma(x)}=a \\
a_{1} a_{2} \ldots a_{n}, \sigma & \models x<y & \text { if } \sigma(x)<\sigma(y) \\
a_{1} a_{2} \ldots a_{n}, \sigma & \models x \in X & \text { if } \sigma(x) \in \sigma(X) \\
a_{1} a_{2} \ldots a_{n} \sigma & \models \phi \wedge \phi^{\prime} & \text { if }\left(a_{1} a_{2} \ldots a_{n}, \sigma \models \phi\right) \text { and }\left(a_{1} a_{2} \ldots a_{n}, \sigma \models \phi^{\prime}\right) \\
a_{1} a_{2} \ldots a_{n}, \sigma & \models \neg \phi & \text { if }\left(a_{1} a_{2} \ldots a_{n}, \sigma \not \models \phi\right) \\
a_{1} a_{2} \ldots a_{n}, \sigma & \models \exists x . \phi & \text { if there is an } i \in\{1,2,3, \ldots n\} \text { such } a_{1} a_{2} \ldots a_{n}, \sigma[x: i] \models \phi \\
a_{1} a_{2} \ldots a_{n}, \sigma & \models \exists X . \phi & \text { if there is } S \subseteq\{1,2,3, \ldots n\} \text { such } a_{1} a_{2} \ldots a_{n}, \sigma[X: S] \models \phi
\end{array}
$$

where $\sigma[v: y](u)=\sigma(u)$ if $u \neq v$ and $\sigma[v: y](v)=y$.
Given a (V, W)-word $\left(a_{1}, F_{1}, S_{1}\right)\left(a_{2}, F_{2}, S_{2}\right) \ldots\left(a_{n}, F_{n}, S_{n}\right)$ we can construct a word-valuation pair (w, σ) by setting $w=a_{1} a_{2} \ldots a_{n}$ and $\sigma(x)=i$ if $x \in F_{i}$ for any $x \in V$ and $\sigma(X)=$ $\left\{i \mid X \in S_{i}\right\}$ for any $X \in W$. It is easy to check that this is a bijective correspondance between (V, W)-words and word-valuation pairs. We say that a (V, W)-word satisfies a formula ϕ if and only if the corresponding word-valuation pair satisfies the formula ϕ.

