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Linear-time Temporal Logic

LTL — convenient specification language

Atomic propositions, boolean connectives, temporal
modalities.
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Linear-time Temporal Logic

LTL — convenient specification language

Atomic propositions, boolean connectives, temporal
modalities.

Models are words.

Formulas are interpreted at positions of a word.

w = w1w2w3 . . . with wi ∈ Σ

w , i |= ϕ ?
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Syntax and Semantics

Atomic propositions: elements of Σ.

w , i |= a ⇐⇒ wi = a
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Syntax and Semantics

Atomic propositions: elements of Σ.

w , i |= a ⇐⇒ wi = a
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The Next state operator:

w , i |= Xϕ ⇐⇒ w , i + 1 |= ϕ
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Syntax and Semantics

The Until operator:

w , i |= ϕUψ ⇐⇒ ∃j ≥ i. w, j |= ψ and ∀i ≤ k < j. w, k |= ϕ
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Syntax and Semantics

The Until operator:

w , i |= ϕUψ ⇐⇒ ∃j ≥ i. w, j |= ψ and ∀i ≤ k < j. w, k |= ϕ
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Boolean Connectives:

ϕ ∧ ψ, ¬ϕ, . . .

with the usual interpretation.
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Other Modalities

The Future modality

w , i |= Fϕ ⇐⇒ ∃j ≥ i. w, j |= ϕ
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Other Modalities

The Future modality
Fϕ = ⊤Uϕ
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Other Modalities

The Future modality
Fϕ = ⊤Uϕ
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Henceforth modality:

w , i |= Gϕ ⇐⇒ ∀j ≥ i. w, j |= ϕ
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Other Modalities

The Future modality
Fϕ = ⊤Uϕ
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Henceforth modality:

Gϕ = ¬F¬ϕ
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The Universal Modality

The Next-Until modality:

w , i |= ϕXUψ ≡ ∃j > i. w, j |= ψ and ∀i < k ≤ j. w, k |= ϕ
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The Universal Modality

The Next-Until modality:
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ϕXUψ = X(ϕUψ)
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The Universal Modality

The Next-Until modality:
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ϕXUψ = X(ϕUψ)

Next-Until can express everthing else

Xϕ = ⊥XUϕ
ϕUψ = ψ ∨ (ϕ ∧ ϕXUψ)
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LTL definable languages

A word satisfies ϕ if the initial position satisfies ϕ

w |= ϕ ⇐⇒ w , 1 |= ϕ
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LTL definable languages

A word satisfies ϕ if the initial position satisfies ϕ

w |= ϕ ⇐⇒ w , 1 |= ϕ

Formulas define languages. For example,

G(a =⇒ Fb)

describes words in which there is a b somewhere to the right of
every a.

b∗(aa∗bb∗)∗
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Finite/Infinite Words

LTL formulas are interpreted over both finite and infinite
words.
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LTL formulas are interpreted over both finite and infinite
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Finite/Infinite Words

LTL formulas are interpreted over both finite and infinite
words.

Satisfiability of a formula may depend on the class of models.

GX⊤

is satisfied only over infinite words.

F¬X⊤

is satisfied only by finite words.

The empty word is not a model.
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Finite/Infinite Words

LTL formulas are interpreted over both finite and infinite
words.

Satisfiability of a formula may depend on the class of models.

GX⊤

is satisfied only over infinite words.

F¬X⊤

is satisfied only by finite words.

The empty word is not a model.

We restrict ourselves to finite word models (for now!).
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable x .

T (a) = a(x)
T (Xα) = ∃y . (y = x + 1) ∧ T (α)[y/x ]
T (ϕUψ) = ∃y . (y ≥ x) ∧ T (ψ)[y/x ]∧

∀z .(x ≤ z < y) =⇒ T (ϕ)[z/x ]
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable x .

T (a) = a(x)
T (Xα) = ∃y . (y = x + 1) ∧ T (α)[y/x ]
T (ϕUψ) = ∃y . (y ≥ x) ∧ T (ψ)[y/x ]∧

∀z .(x ≤ z < y) =⇒ T (ϕ)[z/x ]

w , i |= T (ϕ) ⇐⇒ w , i |= ϕ.
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable x .

T (a) = a(x)
T (Xα) = ∃y . (y = x + 1) ∧ T (α)[y/x ]
T (ϕUψ) = ∃y . (y ≥ x) ∧ T (ψ)[y/x ]∧

∀z .(x ≤ z < y) =⇒ T (ϕ)[z/x ]

w , i |= T (ϕ) ⇐⇒ w , i |= ϕ.

T (ϕ) uses at the most 3 variables (x , y and z). So, LTL is
expressible in FO(3).
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.
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Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.

What about FO?
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over
words is non-elementary.
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over
words is non-elementary.

Conclusion: FO seems to be a stronger logic than LTL.
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Model Checking

Given a FA A and a formula ϕ check if every word accepted by the
automaton A satisfies the formula ϕ.
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Model Checking

Given a FA A and a formula ϕ check if every word accepted by the
automaton A satisfies the formula ϕ.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over
words is PSPACE-complete.
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Model Checking

Given a FA A and a formula ϕ check if every word accepted by the
automaton A satisfies the formula ϕ.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over
words is PSPACE-complete.

In particular
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Model Checking

Given a FA A and a formula ϕ check if every word accepted by the
automaton A satisfies the formula ϕ.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over
words is PSPACE-complete.

In particular

Theorem:(Vardi/Wolper) The model-checking problem for LTL is
solvable in time O(|A|.2O(|ϕ|)).
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.
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Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke’s proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke’s proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke’s proof due to
Volker Diekert and Paul Gastin.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke’s proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke’s proof due to
Volker Diekert and Paul Gastin.

The rest of this talk and the next would be devoted to proving this
result.
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas ϕ1 and ϕ2 to describe the
language L(ϕ1).L(ϕ2)?
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Star-free Regular Languages

Regular expressions constructed without the ∗ operator:

e ::= a | e1 + e2 | ¬e1 | e1.e2

Theorem:(Schutzenberger) L is aperiodic if and only if it is
star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is
FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas ϕ1 and ϕ2 to describe the
language L(ϕ1).L(ϕ2)?

Easy if the decomposition is unambiguous. (eg.) L1.c .L2 where
either L1 or L2 is c-free.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.
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The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:
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monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

L is finite. Easy.
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The Proof: Base cases

The proof proceeds via a double induction: On the size of the
monoid recognizing L and the size of the alphabet.

The Base Cases:

M is the trivial monoid.

L is Σ+. Use ⊤.
L is ∅. Use ⊥.

Σ is singleton.

L is finite. Easy.
L is {ai | i ≥ N}. Easy.
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

if L′ is a language over an alphabet A with |A| < |Σ|
recognized by M then L′ is expressible in LTLA.

show that L is expressible in LTLΣ.
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The Proof:

Induction Step: Given L over an alphabet Σ recognized by a
monoid M such that:

if |M ′| < |M| then any language recognized by M ′ is
expressible in LTL.

if L′ is a language over an alphabet A with |A| < |Σ|
recognized by M then L′ is expressible in LTLA.

show that L is expressible in LTLΣ.

Observation 1: If ϕ is a LTLA formula describing the language L

and A ⊆ Σ then
ϕ ∧

∧

a∈Σ\A

G¬a

is a LTLΣ formula that describes L.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

“No cs”, “Exactly 1 c” and “Atleast 2 cs” are expressible in LTL.
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Splitting by a letter

Let L be recognized by M via the morphism h as h−1(X ).

Pick a letter c such that h(c) 6= 1.

Such a c must exist. Otherwise, L is recognized by the

trivial monoid.

Decompose L into three disjoint sets:

L0 consisting of words of L with no cs.

L1 consisting of words of L with exactly one c .

L2 consisting of words of L with at least two cs.

“No cs”, “Exactly 1 c” and “Atleast 2 cs” are expressible in LTL.

It suffices to show that each of these three languages is LTL
expressible.
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The Trivial Case: L0

Let A = Σ \ {c}.
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The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.
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The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

So, L0 is defined by an LTLA formula ϕ0 over A.
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The Trivial Case: L0

Let A = Σ \ {c}.

L0 is language over a smaller alphabet A, recognized by M via
h.

So, L0 is defined by an LTLA formula ϕ0 over A.

By Observation 1, it is expressible in LTLΣ.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

If xcy is in the RHS then h(xcy) = α.h(c).β ∈ X . Thus
xcy ∈ L.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Why?

If xcy is in the RHS then h(xcy) = α.h(c).β ∈ X . Thus
xcy ∈ L.

Let w ∈ L1. Therefore, w = xcy . Take α = h(x) and
β = h(y).
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

L1 is a union of languages of the form Lα.c .Lβ where Lα,Lβ ⊆ A∗

are recognized by M and hence LTLA (and therefore LTLΣ)
expressible.
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The Easy Case: L1

L1 =
⋃

α.h(c).β∈X

(h−1(α) ∩ A∗).c .(h−1(β) ∩ A∗)

Let Lα = h−1(α) ∩ A∗ and Lβ = h−1(β) ∩ A∗.

L1 is a union of languages of the form Lα.c .Lβ where Lα,Lβ ⊆ A∗

are recognized by M and hence LTLA (and therefore LTLΣ)
expressible.
Well, almost! Lα ∩ A+ and Lβ ∩ A+ are LTL expressible. We have
to deal with ǫ separately
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

Otherwise, ϕ1 ∨ ⊤U(c ∧ ¬X⊤) describes the language A∗.c .Lβ .
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Dealing with Unambiguous Concatenations

We may rewrite Lα.c .Lβ as

A∗.c .Lβ ∩ Lα.c .Σ
∗

If ϕβ is the LTLΣ formula expressing Lβ ∩ A+ then
ϕ1 = ⊤U(c ∧ Xϕβ) describes A∗.c .(Lβ ∩ A+).

If ǫ 6∈ Lβ then ϕ1 also describes the language A∗.c .Lβ .

Otherwise, ϕ1 ∨ ⊤U(c ∧ ¬X⊤) describes the language A∗.c .Lβ .

This case was easy because our modalities walk only to the right
and so cannot “stray” to the left. Dealing with Lα.c .Σ

∗ will need a
little more work.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We cannot use ϕα to describe Lα.c .Σ
∗ since the modalities may

walk to the right and cross the c boundary.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

This relativization is defined via structural recursion as follows:

a′ = a ∧ XFc
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(¬ϕ)′ = (¬ϕ′) ∧ ¬c ∧ Fc
(ϕXUψ)′ = (ϕ′ ∧ ¬c)XU(ψ′ ∧ ¬c)
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Unambiguous Concatenation: Lα.c .Σ∗

Let ϕα be a LTLA formula describing Lα ∩ A+.

We “relativize” ϕα to a formula ϕ′
α which examines the part to the

left of the first c and checks if it satisfies ϕα.

Formally, w |= ϕ′
α iff w = xcy , x ∈ A+ and x |= ϕα.

This relativization is defined via structural recursion as follows:

a′ = a ∧ XFc
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(¬ϕ)′ = (¬ϕ′) ∧ ¬c ∧ Fc
(ϕXUψ)′ = (ϕ′ ∧ ¬c)XU(ψ′ ∧ ¬c)

ϕ2 = ϕ′
α describes (Lα ∩ A+).c .Σ∗. If ǫ 6∈ Lα then ϕ2 also

describes Lα.c .Σ
∗. Otherwise, use ϕ2 ∨ c .
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

L2 =
⋃

αβγ∈X

(h−1(α) ∩ A∗).(h−1(β) ∩ ∆).(h−1(γ) ∩ A∗)
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The Interesting Case: L2

So far, we got away by examining the alphabet. Here we need to
examine M and induct on its size.

A word w in L2 is of the form t0ct1ct2c . . . tk−1ctk for some k > 1,
ti ∈ A∗.

Further, h(w) = h(t0)h(ct1ct2ct3 . . . tk−1c)h(tk) ∈ X .

Let ∆ = (cA∗)+c . Then, L2 ⊆ A∗.∆.A∗.

L2 =
⋃

αβγ∈X

(h−1(α) ∩ A∗).(h−1(β) ∩ ∆).(h−1(γ) ∩ A∗)

The first and third components are LTL definable. What about
the middle component?
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
3 the LTLM formula describing K can be lifted to a formula in

LTLΣ describing Lβ ∩ ∆.
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We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:
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An Outline of the proof

We show that the language Lβ ∩ ∆ is LTL definable as follows:

1 Translate each word in ∆ to a word over the alphabet M

(actually h(A∗) ⊆ M) via a map σ.
2 Construct a language K over M such that:

1 σ−1(K ) = Lβ ∩ ∆
2 K is recognized by a aperiodic monoid smaller than M .
3 the LTLM formula describing K can be lifted to a formula in

LTLΣ describing Lβ ∩ ∆.

We use m to denote elements of M when treated as letters and m

when they are treated as elements of the monoid M.
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The map σ and Language K

The map σ is the obvious one:

σ(ct1ct2 . . . tk−2ctk−1c) = h(t1)h(t2) . . . h(tk−1)
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The map σ and Language K

The map σ is the obvious one:

σ(ct1ct2 . . . tk−2ctk−1c) = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}
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The map σ and Language K

The map σ is the obvious one:

σ(ct1ct2 . . . tk−2ctk−1c) = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K ) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
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The map σ and Language K

The map σ is the obvious one:

σ(ct1ct2 . . . tk−2ctk−1c) = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K ) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
= {ct1ct2 . . . ctkc | h(c)h(t1)h(c)h(t2) . . . h(c)h(tk)h(c) = β
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The map σ and Language K

The map σ is the obvious one:

σ(ct1ct2 . . . tk−2ctk−1c) = h(t1)h(t2) . . . h(tk−1)

Given the map σ and requirement 2.1, the definition of K is also
quite obvious:

K = {m1m2 . . .mk | h(c)m1h(c)m2 . . . h(c)mkh(c) = β}

With these definitions:

σ−1(K ) = {ct1ct2 . . . ctkc | h(t1)h(t2) . . . h(tk) ∈ K}
= {ct1ct2 . . . ctkc | h(c)h(t1)h(c)h(t2) . . . h(c)h(tk)h(c) = β
= Lβ ∩ ∆ as required by 2.1
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

xm ◦ xm ◦ . . . xm = xNm. Thus, Locm(M) is aperiodic
whenever M is aperiodic.
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Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid Locm(M): Let M be a monoid and m ∈ M. Then

Locm(M) = (mM ∩ Mm, ◦,m)

where (xm) ◦ (my)
△
= xmy .

Observe that xm ◦ ym = xm ◦ my ′ = xmy ′ = xym. Thus ◦ is
associative and m = 1.m is the identity w.r.t. ◦.

xm ◦ xm ◦ . . . xm = xNm. Thus, Locm(M) is aperiodic
whenever M is aperiodic.

1 6∈ Locm(M) if m 6= 1. This follows from the fact that
1 6= m′m for any m,m′ 6= 1.
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

g(m1m2 . . .mk) = β if and only if
h(c)m1h(c) ◦ h(c)m2h(c) ◦ . . . h(c)mkh(c) = β if and only if
h(c)m1h(c)m2h(c) . . . h(c)mkh(c) = β if and only if
m1m2 . . .mk ∈ K .
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A Monoid for K

We now show that the monoid Loch(c)(M) accepts the language
K .

Let g : M∗ −→ Loch(c)(M) be given by g(m) = h(c)mh(c).

Claim: K = g−1(β)

Proof:

Note that β ∈ Loch(c)(M) whenever h−1(β) ∩ ∆ 6= ∅.

g(m1m2 . . .mk) = β if and only if
h(c)m1h(c) ◦ h(c)m2h(c) ◦ . . . h(c)mkh(c) = β if and only if
h(c)m1h(c)m2h(c) . . . h(c)mkh(c) = β if and only if
m1m2 . . .mk ∈ K .

K is recognized by a smaller monoid and hence there is an LTLM

formula that describes K
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m
# = (c ∧ XFc) ∧ (Xψ′

m)
where ψm is the formula in LTLA describing
h−1(m) ∩ A+ and ψ′

m is its relativization
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗
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2

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m
# = (c ∧ XFc) ∧ (Xψ′

m)
where ψm is the formula in LTLA describing
h−1(m) ∩ A+ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ#

1 ∧ ϕ#
2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m
# = (c ∧ XFc) ∧ (Xψ′

m)
where ψm is the formula in LTLA describing
h−1(m) ∩ A+ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ#

1 ∧ ϕ#
2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))
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Lifting the formula for K

We show that for any formula ϕ in LTLM , there is a formula ϕ# in
LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m
# = (c ∧ XFc) ∧ (Xψ′

m)
where ψm is the formula in LTLA describing
h−1(m) ∩ A+ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ#

1 ∧ ϕ#
2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))

(ϕ1Uϕ2)
# = (c =⇒ ϕ#

1 )U(c ∧ ϕ#
2 )
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LTLΣ such that

w |= ϕ# ⇐⇒ w = ct1ct2c . . . tk−1ctk , with ti ∈ A∗

and σ(ct1ct2 . . . tk−1c) |= ϕ

The formula ϕ# is defined recursively on the structure as follows:

m
# = (c ∧ XFc) ∧ (Xc ∨ Xψ′

m)
where ψm is the formula in LTLA describing
h−1(m) ∩ A+ and ψ′

m is its relativization

(ϕ1 ∧ ϕ2)
# = ϕ#

1 ∧ ϕ#
2

(¬ϕ)# = ¬(ϕ#) ∧ (c ∧ XFc)
(Xϕ)# = X(¬cU(c ∧ ϕ#))

(ϕ1Uϕ2)
# = (c =⇒ ϕ#

1 )U(c ∧ ϕ#
2 )
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Combining the Three parts

The formula describing (Lα ∩ A∗).(Lβ ∩ ∆).(Lγ ∩ A∗) is the
conjunction of the formulas describing the following languages.

1 (Lα ∩ A∗).(cA∗)+.c .A∗.

2 A∗.(cA∗)+.c .(Lγ ∩ A∗).

3 A∗.((Lβ ∩ ∆).A∗).
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conjunction of the formulas describing the following languages.

1 (Lα ∩ A∗).(cA∗)+.c .A∗.

ϕ′ ∧ (F(c ∧ XFc))

2 A∗.(cA∗)+.c .(Lγ ∩ A∗).

F(c ∧ XF(c ∧ F(c ∧ ¬(XFc) ∧ Xϕ)))

3 A∗.((Lβ ∩ ∆).A∗).
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Combining the Three parts

The formula describing (Lα ∩ A∗).(Lβ ∩ ∆).(Lγ ∩ A∗) is the
conjunction of the formulas describing the following languages.

1 (Lα ∩ A∗).(cA∗)+.c .A∗.

ϕ′ ∧ (F(c ∧ XFc))

2 A∗.(cA∗)+.c .(Lγ ∩ A∗).

F(c ∧ XF(c ∧ F(c ∧ ¬(XFc) ∧ Xϕ)))

3 A∗.((Lβ ∩ ∆).A∗).
¬cU(c ∧ ϕ#)
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