The Expressive Power of Linear-time Temporal Logic

K Narayan Kumar

Chennai Mathematical Institute
email:kumar@cmi.ac.in
Chennai, Sept 2010

Linear-time Temporal Logic

LTL — convenient specification language

- Atomic propositions, boolean connectives, temporal modalities.

Linear-time Temporal Logic

LTL — convenient specification language

- Atomic propositions, boolean connectives, temporal modalities.
- Models are words.

Linear-time Temporal Logic

LTL - convenient specification language

- Atomic propositions, boolean connectives, temporal modalities.
- Models are words.

Formulas are interpreted at positions of a word.

$$
\begin{gathered}
w=w_{1} w_{2} w_{3} \ldots \quad \text { with } w_{i} \in \Sigma \\
w, i \models \varphi ?
\end{gathered}
$$

Syntax and Semantics

Atomic propositions: elements of Σ.

$$
w, i \models a \quad \Longleftrightarrow \quad w_{i}=a
$$

$$
\left.\begin{array}{l}
a \rightarrow 0 \\
0 \rightarrow 0
\end{array}\right]
$$

$$
a, \neg b, \neg c
$$

Syntax and Semantics

Atomic propositions: elements of Σ.

$$
w, i \equiv a \quad \Longleftrightarrow \quad w_{i}=a
$$

$$
a, \neg b, \neg c
$$

The Next state operator:

$$
w, i \models X \varphi \quad \Longleftrightarrow \quad w, i+1 \models \varphi
$$

Syntax and Semantics

The Until operator:

$$
w, i \models \varphi \mathrm{U} \psi \quad \Longleftrightarrow \quad \exists \mathrm{j} \geq \mathrm{i} . \mathrm{w}, \mathrm{j} \models \psi \text { and } \forall \mathrm{i} \leq \mathrm{k}<\mathrm{j} . \mathrm{w}, \mathrm{k} \models \varphi
$$

Syntax and Semantics

The Until operator:

$$
w, i \models \varphi \mathrm{U} \psi \quad \Longleftrightarrow \quad \exists \mathrm{j} \geq \mathrm{i} . \mathrm{w}, \mathrm{j} \models \psi \text { and } \forall \mathrm{i} \leq \mathrm{k}<\mathrm{j} . \mathrm{w}, \mathrm{k} \models \varphi
$$

Boolean Connectives:

$$
\varphi \wedge \psi, \quad \neg \varphi, \quad \ldots
$$

with the usual interpretation.

Other Modalities

The Future modality

$$
w, i \models \mathrm{~F} \varphi \quad \Longleftrightarrow \quad \exists \mathrm{j} \geq \mathrm{i} . \mathrm{w}, \mathrm{j} \models \varphi
$$

Other Modalities

The Future modality

$$
\mathrm{F} \varphi=\mathrm{TU} \varphi
$$

$0 \rightarrow 0 \rightarrow 0 \rightarrow(\mathrm{~F} \varphi \mathrm{o} \rightarrow \cdots \rightarrow \mathrm{o} \rightarrow \mathrm{o} \rightarrow \mathrm{o} \rightarrow \cdots$

$$
\varphi
$$

Other Modalities

The Future modality

$$
\mathrm{F} \varphi=\mathrm{TU} \varphi
$$

Henceforth modality:

$$
w, i \models \mathrm{G} \varphi \quad \Longleftrightarrow \quad \forall \mathrm{j} \geq \mathrm{i} . \mathrm{w}, \mathrm{j} \models \varphi
$$

Other Modalities

The Future modality

$$
\mathrm{F} \varphi=\mathrm{TU} \varphi
$$

$0 \rightarrow \mathrm{o} \rightarrow \mathrm{o} \rightarrow \mathrm{F} \varphi \mathrm{o} \rightarrow \mathrm{o} \rightarrow \cdots \rightarrow \mathrm{o} \rightarrow \mathrm{o} \rightarrow \mathrm{o} \rightarrow \cdots$ The φ

Henceforth modality:

$$
\mathrm{G} \varphi=\neg \mathrm{F} \neg \varphi
$$

The Universal Modality

The Next-Until modality:

$$
w, i \models \varphi \mathrm{XU} \psi \equiv \exists \mathrm{j}>\mathrm{i} . \mathrm{w}, \mathrm{j} \models \psi \text { and } \forall \mathrm{i}<\mathrm{k} \leq \mathrm{j} . \mathrm{w}, \mathrm{k} \models \varphi
$$

The Universal Modality

The Next-Until modality:

The Universal Modality

The Next-Until modality:

$$
\begin{gathered}
\circ \rightarrow 0 \rightarrow 0 \rightarrow(0 \rightarrow 0 \rightarrow \cdots \rightarrow \underset{\varphi}{\varphi \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow}+\cdots \\
\varphi \mathrm{XU} \psi=\mathrm{X}(\varphi \cup \psi)
\end{gathered}
$$

Next-Until can express everthing else

$$
\begin{aligned}
\mathrm{X} \varphi & =\perp \mathrm{XU} \varphi \\
\varphi \mathrm{U} \psi & =\psi \vee(\varphi \wedge \varphi \mathrm{XU} \psi)
\end{aligned}
$$

LTL definable languages

A word satisfies φ if the initial position satisfies φ

$$
w \models \varphi \quad \Longleftrightarrow \quad w, 1 \models \varphi
$$

LTL definable languages

A word satisfies φ if the initial position satisfies φ

$$
w \models \varphi \quad \Longleftrightarrow \quad w, 1 \models \varphi
$$

Formulas define languages. For example,

$$
\mathrm{G}(\mathrm{a} \Longrightarrow \mathrm{Fb})
$$

describes words in which there is a b somewhere to the right of every a.

$$
b^{*}\left(a a^{*} b b^{*}\right)^{*}
$$

Finite/Infinite Words

- LTL formulas are interpreted over both finite and infinite words.

Finite/Infinite Words

- LTL formulas are interpreted over both finite and infinite words.
- Satisfiability of a formula may depend on the class of models.

Finite/Infinite Words

- LTL formulas are interpreted over both finite and infinite words.
- Satisfiability of a formula may depend on the class of models.
GXT
is satisfied only over infinite words.

$$
\mathrm{F} \neg \mathrm{X} \top
$$

is satisfied only by finite words.

- The empty word is not a model.

Finite/Infinite Words

- LTL formulas are interpreted over both finite and infinite words.
- Satisfiability of a formula may depend on the class of models.
GXT
is satisfied only over infinite words.

$$
\mathrm{F} \neg \mathrm{X} \top
$$

is satisfied only by finite words.

- The empty word is not a model.

We restrict ourselves to finite word models (for now!).

LTL to FO over Words

- LTL formulas are interpreted at a pair w, i.

LTL to FO over Words

- LTL formulas are interpreted at a pair w, i.
- Translated to FO formulas with a single free variable x.

LTL to FO over Words

- LTL formulas are interpreted at a pair w, i.
- Translated to FO formulas with a single free variable x.

$$
\begin{array}{ll}
\mathcal{T}(a)= & a(x) \\
\mathcal{T}(X \alpha)= & \exists y \cdot(y=x+1) \wedge \mathcal{T}(\alpha)[y / x] \\
\mathcal{T}(\varphi \cup \psi)= & \exists y \cdot(y \geq x) \wedge \mathcal{T}(\psi)[y / x] \wedge \\
& \forall z \cdot(x \leq z<y) \Longrightarrow \mathcal{T}(\varphi)[z / x]
\end{array}
$$

LTL to FO over Words

- LTL formulas are interpreted at a pair w, i.
- Translated to FO formulas with a single free variable x.

$$
\begin{array}{ll}
\mathcal{T}(a)= & a(x) \\
\mathcal{T}(X \alpha)= & \exists y \cdot(y=x+1) \wedge \mathcal{T}(\alpha)[y / x] \\
\mathcal{T}(\varphi \cup \psi)= & \exists y \cdot(y \geq x) \wedge \mathcal{T}(\psi)[y / x] \wedge \\
& \forall z \cdot(x \leq z<y) \Longrightarrow \mathcal{T}(\varphi)[z / x]
\end{array}
$$

- $w, i \models \mathcal{T}(\varphi) \quad \Longleftrightarrow \quad w, i \models \varphi$.

LTL to FO over Words

- LTL formulas are interpreted at a pair w, i.
- Translated to FO formulas with a single free variable x.

$$
\begin{array}{ll}
\mathcal{T}(a)= & a(x) \\
\mathcal{T}(X \alpha)= & \exists y \cdot(y=x+1) \wedge \mathcal{T}(\alpha)[y / x] \\
\mathcal{T}(\varphi \cup \psi)= & \exists y \cdot(y \geq x) \wedge \mathcal{T}(\psi)[y / x] \wedge \\
& \forall z \cdot(x \leq z<y) \Longrightarrow \mathcal{T}(\varphi)[z / x]
\end{array}
$$

- $w, i \models \mathcal{T}(\varphi) \quad \Longleftrightarrow \quad w, i \models \varphi$.
- $\mathcal{T}(\varphi)$ uses at the most 3 variables (x, y and z). So, LTL is expressible in $\mathrm{FO}(3)$.

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is PSPACE complete.

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in time $2^{|\varphi|}$.

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in time $2^{|\varphi|}$.

Not very different from the best known for propositional formulas.

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in time $2^{|\varphi|}$.

Not very different from the best known for propositional formulas.

What about FO?

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in time $2^{|\varphi|}$.

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over words is non-elementary.

Complexity of LTL and FO

Satisfiability: Given a formula φ determine whether there is some word w such tha $w \models \varphi$.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in time $2^{|\varphi|}$.

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over words is non-elementary.

Conclusion: FO seems to be a stronger logic than LTL.

Model Checking

Given a FA A and a formula φ check if every word accepted by the automaton A satisfies the formula φ.

Model Checking

Given a FA A and a formula φ check if every word accepted by the automaton A satisfies the formula φ.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over words is PSPACE-complete.

Model Checking

Given a FA A and a formula φ check if every word accepted by the automaton A satisfies the formula φ.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over words is PSPACE-complete.

In particular

Model Checking

Given a FA A and a formula φ check if every word accepted by the automaton A satisfies the formula φ.

Theorem:(Clarke/Sistla) The Model checking problem for LTL over words is PSPACE-complete.

In particular
Theorem:(Vardi/Wolper) The model-checking problem for LTL is solvable in time $O\left(|A| .2^{O(|\varphi|)}\right)$.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

- Kamp's logic uses "future" and "past" modalities.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

- Kamp's logic uses "future" and "past" modalities.
- Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for the future fragment.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

- Kamp's logic uses "future" and "past" modalities.
- Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for the future fragment.
- Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

- Kamp's logic uses "future" and "past" modalities.
- Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for the future fragment.
- Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke's proof uses a simple double induction. Has been generalized to Mazurkiewicz traces.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

- Kamp's logic uses "future" and "past" modalities.
- Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for the future fragment.
- Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke's proof uses a simple double induction. Has been generalized to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke's proof due to Volker Diekert and Paul Gastin.

Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

- Kamp's logic uses "future" and "past" modalities.
- Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for the future fragment.
- Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke's proof uses a simple double induction. Has been generalized to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke's proof due to Volker Diekert and Paul Gastin.

The rest of this talk and the next would be devoted to proving this result.

Star-free Regular Languages

Regular expressions constructed without the $*$ operator:

$$
e \quad::=a\left|e_{1}+e_{2}\right| \neg e_{1} \mid e_{1} \cdot e_{2}
$$

Star-free Regular Languages

Regular expressions constructed without the $*$ operator:

$$
e \quad::=a\left|e_{1}+e_{2}\right| \neg e_{1} \mid e_{1} \cdot e_{2}
$$

Theorem:(Schutzenberger) L is aperiodic if and only if it is star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is FO expressible.

Star-free Regular Languages

Regular expressions constructed without the $*$ operator:

$$
e \quad::=a\left|e_{1}+e_{2}\right| \neg e_{1} \mid e_{1} \cdot e_{2}
$$

Theorem:(Schutzenberger) L is aperiodic if and only if it is star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is FO expressible.

Question: Can we translate star-free expressions into LTL?

Star-free Regular Languages

Regular expressions constructed without the $*$ operator:

$$
e \quad::=a\left|e_{1}+e_{2}\right| \neg e_{1} \mid e_{1} \cdot e_{2}
$$

Theorem:(Schutzenberger) L is aperiodic if and only if it is star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is FO expressible.

Question: Can we translate star-free expressions into LTL?
How do we put together LTL formulas φ_{1} and φ_{2} to describe the language $L\left(\varphi_{1}\right) \cdot L\left(\varphi_{2}\right)$?

Star-free Regular Languages

Regular expressions constructed without the $*$ operator:

$$
e \quad::=a\left|e_{1}+e_{2}\right| \neg e_{1} \mid e_{1} \cdot e_{2}
$$

Theorem:(Schutzenberger) L is aperiodic if and only if it is star-free.

Theorem:(McNaughton and Papert) L is star-free if and only if it is FO expressible.

Question: Can we translate star-free expressions into LTL?
How do we put together LTL formulas φ_{1} and φ_{2} to describe the language $L\left(\varphi_{1}\right) \cdot L\left(\varphi_{2}\right)$?

Easy if the decomposition is unambiguous. (eg.) $L_{1} \cdot c . L_{2}$ where either L_{1} or L_{2} is c-free.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- M is the trivial monoid.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- M is the trivial monoid.
- L is Σ^{+}. Use T.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- M is the trivial monoid.
- L is Σ^{+}. Use T.
- L is \emptyset. Use \perp.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- M is the trivial monoid.
- L is Σ^{+}. Use T.
- L is \emptyset. Use \perp.
- Σ is singleton.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- M is the trivial monoid.
- L is Σ^{+}. Use T.
- L is \emptyset. Use \perp.
- Σ is singleton.
- L is finite. Easy.

The Proof: Base cases

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- M is the trivial monoid.
- L is Σ^{+}. Use T.
- L is \emptyset. Use \perp.
- Σ is singleton.
- L is finite. Easy.
- L is $\left\{a^{i} \mid i \geq N\right\}$. Easy.

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a monoid M such that:

The Proof:

Induction Step: Given L over an alphabet \sum recognized by a monoid M such that:

- if $\left|M^{\prime}\right|<|M|$ then any language recognized by M^{\prime} is expressible in LTL.

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a monoid M such that:

- if $\left|M^{\prime}\right|<|M|$ then any language recognized by M^{\prime} is expressible in LTL.
- if L^{\prime} is a language over an alphabet A with $|A|<|\Sigma|$ recognized by M then L^{\prime} is expressible in $L T L_{A}$.
show that L is expressible in $L T L_{\Sigma}$.

The Proof:

Induction Step: Given L over an alphabet Σ recognized by a monoid M such that:

- if $\left|M^{\prime}\right|<|M|$ then any language recognized by M^{\prime} is expressible in LTL.
- if L^{\prime} is a language over an alphabet A with $|A|<|\Sigma|$ recognized by M then L^{\prime} is expressible in $L T L_{A}$.
show that L is expressible in $L T L_{\Sigma}$.

Observation 1: If φ is a $L T L_{A}$ formula describing the language L and $A \subseteq \Sigma$ then

$$
\varphi \wedge \bigwedge_{a \in \Sigma \backslash A} G \neg a
$$

is a $L T L_{\Sigma}$ formula that describes L.

Splitting by a letter

Let L be recognized by M via the morphism h as $h^{-1}(X)$.

Splitting by a letter

Let L be recognized by M via the morphism h as $h^{-1}(X)$.
Pick a letter c such that $h(c) \neq 1$.

Splitting by a letter

Let L be recognized by M via the morphism h as $h^{-1}(X)$.
Pick a letter c such that $h(c) \neq 1$.
Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Splitting by a letter

Let L be recognized by M via the morphism h as $h^{-1}(X)$.
Pick a letter c such that $h(c) \neq 1$.
Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Decompose L into three disjoint sets:

- L_{0} consisting of words of L with no cs.
- L_{1} consisting of words of L with exactly one c.
- L_{2} consisting of words of L with at least two cs.

Splitting by a letter

Let L be recognized by M via the morphism h as $h^{-1}(X)$.
Pick a letter c such that $h(c) \neq 1$.
Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Decompose L into three disjoint sets:

- L_{0} consisting of words of L with no cs.
- L_{1} consisting of words of L with exactly one c.
- L_{2} consisting of words of L with at least two cs.
"No cs", "Exactly 1 c " and "Atleast 2 cs " are expressible in LTL.

Splitting by a letter

Let L be recognized by M via the morphism h as $h^{-1}(X)$.
Pick a letter c such that $h(c) \neq 1$.
Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Decompose L into three disjoint sets:

- L_{0} consisting of words of L with no cs.
- L_{1} consisting of words of L with exactly one c.
- L_{2} consisting of words of L with at least two cs.
"No cs", "Exactly 1 c " and "Atleast 2 cs " are expressible in LTL.
It suffices to show that each of these three languages is LTL expressible.

The Trivial Case: L_{0}

Let $A=\Sigma \backslash\{c\}$.

The Trivial Case: L_{0}

Let $A=\Sigma \backslash\{c\}$.

- L_{0} is language over a smaller alphabet A, recognized by M via h.

The Trivial Case: L_{0}

Let $A=\Sigma \backslash\{c\}$.

- L_{0} is language over a smaller alphabet A, recognized by M via h.
- So, L_{0} is defined by an $L T L_{A}$ formula φ_{0} over A.

The Trivial Case: L_{0}

Let $A=\Sigma \backslash\{c\}$.

- L_{0} is language over a smaller alphabet A, recognized by M via h.
- So, L_{0} is defined by an $L T L_{A}$ formula φ_{0} over A.
- By Observation 1, it is expressible in $L T L_{\Sigma}$.

The Easy Case: L_{1}

$$
L_{1}=\bigcup_{\alpha \cdot h(c) \cdot \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot c \cdot\left(h^{-1}(\beta) \cap A^{*}\right)
$$

The Easy Case: L_{1}

$$
L_{1}=\bigcup_{\alpha . h(c) . \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) . c \cdot\left(h^{-1}(\beta) \cap A^{*}\right)
$$

Why?

The Easy Case: L_{1}

$$
L_{1}=\bigcup_{\alpha . h(c) . \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) . c .\left(h^{-1}(\beta) \cap A^{*}\right)
$$

Why?

- If $x c y$ is in the RHS then $h(x c y)=\alpha \cdot h(c) \cdot \beta \in X$. Thus $x c y \in L$.

The Easy Case: L_{1}

$$
L_{1}=\bigcup_{\alpha . h(c) . \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) . c \cdot\left(h^{-1}(\beta) \cap A^{*}\right)
$$

Why?

- If $x c y$ is in the RHS then $h(x c y)=\alpha \cdot h(c) \cdot \beta \in X$. Thus $x c y \in L$.
- Let $w \in L_{1}$. Therefore, $w=x c y$. Take $\alpha=h(x)$ and $\beta=h(y)$.

The Easy Case: L_{1}

$$
\begin{aligned}
& L_{1}=\bigcup_{\alpha . h(c) \cdot \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot c \cdot\left(h^{-1}(\beta) \cap A^{*}\right) \\
& \text { Let } L_{\alpha}=h^{-1}(\alpha) \cap A^{*} \text { and } L_{\beta}=h^{-1}(\beta) \cap A^{*} .
\end{aligned}
$$

The Easy Case: L_{1}

$$
L_{1}=\bigcup_{\alpha . h(c) . \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) . c .\left(h^{-1}(\beta) \cap A^{*}\right)
$$

$$
\text { Let } L_{\alpha}=h^{-1}(\alpha) \cap A^{*} \text { and } L_{\beta}=h^{-1}(\beta) \cap A^{*} \text {. }
$$

L_{1} is a union of languages of the form $L_{\alpha} . c . L_{\beta}$ where $L_{\alpha}, L_{\beta} \subseteq A^{*}$ are recognized by M and hence $L T L_{A}$ (and therefore $L T L_{\Sigma}$) expressible.

The Easy Case: L_{1}

$$
L_{1}=\bigcup_{\alpha \cdot h(c) \cdot \beta \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot c \cdot\left(h^{-1}(\beta) \cap A^{*}\right)
$$

$$
\text { Let } L_{\alpha}=h^{-1}(\alpha) \cap A^{*} \text { and } L_{\beta}=h^{-1}(\beta) \cap A^{*} \text {. }
$$

L_{1} is a union of languages of the form $L_{\alpha} . c . L_{\beta}$ where $L_{\alpha}, L_{\beta} \subseteq A^{*}$ are recognized by M and hence $L T L_{A}$ (and therefore $L T L_{\Sigma}$) expressible.
Well, almost! $L_{\alpha} \cap A^{+}$and $L_{\beta} \cap A^{+}$are LTL expressible. We have to deal with ϵ separately

Dealing with Unambiguous Concatenations

We may rewrite $L_{\alpha} \cdot c . L_{\beta}$ as

$$
A^{*} . c . L_{\beta} \cap L_{\alpha} \cdot c . \Sigma^{*}
$$

Dealing with Unambiguous Concatenations

We may rewrite $L_{\alpha} \cdot c . L_{\beta}$ as

$$
A^{*} . c . L_{\beta} \cap L_{\alpha} \cdot c \cdot \Sigma^{*}
$$

If φ_{β} is the $L T L_{\Sigma}$ formula expressing $L_{\beta} \cap A^{+}$then $\varphi_{1}=\operatorname{TU}\left(c \wedge X \varphi_{\beta}\right)$ describes $A^{*} . c .\left(L_{\beta} \cap A^{+}\right)$.

Dealing with Unambiguous Concatenations

We may rewrite $L_{\alpha} \cdot c . L_{\beta}$ as

$$
A^{*} . c . L_{\beta} \cap L_{\alpha} \cdot c . \Sigma^{*}
$$

If φ_{β} is the $L T L_{\Sigma}$ formula expressing $L_{\beta} \cap A^{+}$then $\varphi_{1}=\operatorname{TU}\left(\mathrm{c} \wedge \mathrm{X} \varphi_{\beta}\right)$ describes $A^{*} . c .\left(L_{\beta} \cap A^{+}\right)$.

If $\epsilon \notin L_{\beta}$ then φ_{1} also describes the language A^{*}.c. L_{β}.

Dealing with Unambiguous Concatenations

We may rewrite $L_{\alpha} \cdot c . L_{\beta}$ as

$$
A^{*} . c . L_{\beta} \cap L_{\alpha} \cdot c \cdot \Sigma^{*}
$$

If φ_{β} is the $L T L_{\Sigma}$ formula expressing $L_{\beta} \cap A^{+}$then $\varphi_{1}=\operatorname{TU}\left(c \wedge X \varphi_{\beta}\right)$ describes $A^{*} . c .\left(L_{\beta} \cap A^{+}\right)$.

If $\epsilon \notin L_{\beta}$ then φ_{1} also describes the language A^{*}.c. L_{β}.
Otherwise, $\varphi_{1} \vee T U(c \wedge \neg \mathrm{X} \top)$ describes the language A^{*}.c. L_{β}.

Dealing with Unambiguous Concatenations

We may rewrite $L_{\alpha} \cdot c \cdot L_{\beta}$ as

$$
A^{*} . c . L_{\beta} \cap L_{\alpha} \cdot c \cdot \Sigma^{*}
$$

If φ_{β} is the $L T L_{\Sigma}$ formula expressing $L_{\beta} \cap A^{+}$then $\varphi_{1}=\operatorname{TU}\left(c \wedge X \varphi_{\beta}\right)$ describes $A^{*} . c .\left(L_{\beta} \cap A^{+}\right)$.

If $\epsilon \notin L_{\beta}$ then φ_{1} also describes the language A^{*}.c. L_{β}.
Otherwise, $\varphi_{1} \vee \top U(c \wedge \neg X \top)$ describes the language $A^{*} . c . L_{\beta}$.
This case was easy because our modalities walk only to the right and so cannot "stray" to the left. Dealing with $L_{\alpha} \cdot c . \Sigma^{*}$ will need a little more work.

Unambiguous Concatenation: $L_{\alpha} . c . \sum^{*}$

Let φ_{α} be a $L T L_{A}$ formula describing $L_{\alpha} \cap A^{+}$.

Unambiguous Concatenation: $L_{\alpha} . c . \sum^{*}$

Let φ_{α} be a $L T L_{A}$ formula describing $L_{\alpha} \cap A^{+}$.
We cannot use φ_{α} to describe $L_{\alpha} . c . \Sigma^{*}$ since the modalities may walk to the right and cross the c boundary.

Unambiguous Concatenation: $L_{\alpha} . c . \sum^{*}$

Let φ_{α} be a $L T L_{A}$ formula describing $L_{\alpha} \cap A^{+}$.
We "relativize" φ_{α} to a formula $\varphi_{\alpha}^{\prime}$ which examines the part to the left of the first c and checks if it satisfies φ_{α}.

Unambiguous Concatenation: $L_{\alpha} . c . \sum^{*}$

Let φ_{α} be a $L T L_{A}$ formula describing $L_{\alpha} \cap A^{+}$.
We "relativize" φ_{α} to a formula $\varphi_{\alpha}^{\prime}$ which examines the part to the left of the first c and checks if it satisfies φ_{α}.

Formally, $w \models \varphi_{\alpha}^{\prime}$ iff $w=x c y, x \in A^{+}$and $x \models \varphi_{\alpha}$.

Unambiguous Concatenation: $L_{\alpha} . c . \sum^{*}$

Let φ_{α} be a $L T L_{A}$ formula describing $L_{\alpha} \cap A^{+}$.
We "relativize" φ_{α} to a formula $\varphi_{\alpha}^{\prime}$ which examines the part to the left of the first c and checks if it satisfies φ_{α}.

Formally, $w \models \varphi_{\alpha}^{\prime}$ iff $w=x c y, x \in A^{+}$and $x \models \varphi_{\alpha}$.
This relativization is defined via structural recursion as follows:

$$
\begin{array}{ll}
a^{\prime} & =a \wedge \mathrm{XFc} \\
(\varphi \wedge \psi)^{\prime} & =\varphi^{\prime} \wedge \psi^{\prime} \\
(\neg \varphi)^{\prime} & =\left(\neg \varphi^{\prime}\right) \wedge \neg c \wedge \mathrm{Fc} \\
(\varphi \mathrm{XU} \cup)^{\prime} & =\left(\varphi^{\prime} \wedge \neg c\right) \mathrm{XU}\left(\psi^{\prime} \wedge \neg \mathrm{c}\right)
\end{array}
$$

Unambiguous Concatenation: L_{α}. c. Σ^{*}

Let φ_{α} be a $L T L_{A}$ formula describing $L_{\alpha} \cap A^{+}$.
We "relativize" φ_{α} to a formula $\varphi_{\alpha}^{\prime}$ which examines the part to the left of the first c and checks if it satisfies φ_{α}.

Formally, $w \models \varphi_{\alpha}^{\prime}$ iff $w=x c y, x \in A^{+}$and $x \models \varphi_{\alpha}$.
This relativization is defined via structural recursion as follows:

$$
\begin{array}{ll}
a^{\prime} & =a \wedge \mathrm{XFc} \\
(\varphi \wedge \psi)^{\prime} & =\varphi^{\prime} \wedge \psi^{\prime} \\
(\neg \varphi)^{\prime} & =\left(\neg \varphi^{\prime}\right) \wedge \neg c \wedge \mathrm{Fc} \\
(\varphi \mathrm{XU} \cup)^{\prime} & =\left(\varphi^{\prime} \wedge \neg c\right) \mathrm{XU}\left(\psi^{\prime} \wedge \neg \mathrm{c}\right)
\end{array}
$$

$\varphi_{2}=\varphi_{\alpha}^{\prime}$ describes $\left(L_{\alpha} \cap A^{+}\right) . c . \Sigma^{*}$. If $\epsilon \notin L_{\alpha}$ then φ_{2} also describes $L_{\alpha} \cdot c . \Sigma^{*}$. Otherwise, use $\varphi_{2} \vee c$.

The Interesting Case: L_{2}

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

The Interesting Case: L_{2}

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_{2} is of the form $t_{0} c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}$ for some $k>1$, $t_{i} \in A^{*}$.

The Interesting Case: L_{2}

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_{2} is of the form $t_{0} c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}$ for some $k>1$, $t_{i} \in A^{*}$.

Further, $h(w)=h\left(t_{0}\right) h\left(c t_{1} c t_{2} c t_{3} \ldots t_{k-1} c\right) h\left(t_{k}\right) \in X$.

The Interesting Case: L_{2}

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_{2} is of the form $t_{0} c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}$ for some $k>1$, $t_{i} \in A^{*}$.

Further, $h(w)=h\left(t_{0}\right) h\left(c t_{1} c t_{2} c t_{3} \ldots t_{k-1} c\right) h\left(t_{k}\right) \in X$.
Let $\Delta=\left(c A^{*}\right)^{+} c$. Then, $L_{2} \subseteq A^{*} . \Delta . A^{*}$.

The Interesting Case: L_{2}

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_{2} is of the form $t_{0} c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}$ for some $k>1$, $t_{i} \in A^{*}$.

Further, $h(w)=h\left(t_{0}\right) h\left(c t_{1} c t_{2} c t_{3} \ldots t_{k-1} c\right) h\left(t_{k}\right) \in X$.
Let $\Delta=\left(c A^{*}\right)^{+} c$. Then, $L_{2} \subseteq A^{*} . \Delta . A^{*}$.

$$
L_{2}=\bigcup_{\alpha \beta \gamma \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot\left(h^{-1}(\beta) \cap \Delta\right) \cdot\left(h^{-1}(\gamma) \cap A^{*}\right)
$$

The Interesting Case: L_{2}

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_{2} is of the form $t_{0} c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}$ for some $k>1$, $t_{i} \in A^{*}$.

Further, $h(w)=h\left(t_{0}\right) h\left(c t_{1} c t_{2} c t_{3} \ldots t_{k-1} c\right) h\left(t_{k}\right) \in X$.
Let $\Delta=\left(c A^{*}\right)^{+} c$. Then, $L_{2} \subseteq A^{*} . \Delta . A^{*}$.

$$
L_{2}=\bigcup_{\alpha \beta \gamma \in X}\left(h^{-1}(\alpha) \cap A^{*}\right) \cdot\left(h^{-1}(\beta) \cap \Delta\right) \cdot\left(h^{-1}(\gamma) \cap A^{*}\right)
$$

The first and third components are LTL definable. What about the middle component?

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.
(2) Construct a language K over M such that:

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.
(2) Construct a language K over M such that:
(1) $\sigma^{-1}(K)=L_{\beta} \cap \Delta$

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.
(2) Construct a language K over M such that:
(1) $\sigma^{-1}(K)=L_{\beta} \cap \Delta$
(2) K is recognized by a aperiodic monoid smaller than M.

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.
(2) Construct a language K over M such that:
(1) $\sigma^{-1}(K)=L_{\beta} \cap \Delta$
(2) K is recognized by a aperiodic monoid smaller than M.
(3) the $L T L_{M}$ formula describing K can be lifted to a formula in $L T L_{\Sigma}$ describing $L_{\beta} \cap \Delta$.

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.
(2) Construct a language K over M such that:
(1) $\sigma^{-1}(K)=L_{\beta} \cap \Delta$
(2) K is recognized by a aperiodic monoid smaller than M.
(3) the $L T L_{M}$ formula describing K can be lifted to a formula in $L T L_{\Sigma}$ describing $L_{\beta} \cap \Delta$.

An Outline of the proof

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:
(1) Translate each word in Δ to a word over the alphabet M (actually $h\left(A^{*}\right) \subseteq M$) via a map σ.
(2) Construct a language K over M such that:
(1) $\sigma^{-1}(K)=L_{\beta} \cap \Delta$
(2) K is recognized by a aperiodic monoid smaller than M.
(3) the $L T L_{M}$ formula describing K can be lifted to a formula in $L T L_{\Sigma}$ describing $L_{\beta} \cap \Delta$.

We use m to denote elements of M when treated as letters and m when they are treated as elements of the monoid M.

The map σ and Language K

The map σ is the obvious one:

$$
\sigma\left(c t_{1} c t_{2} \ldots t_{k-2} c t_{k-1} c\right)=\mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}-1}\right)
$$

The map σ and Language K

The map σ is the obvious one:

$$
\sigma\left(c t_{1} c t_{2} \ldots t_{k-2} c t_{k-1} c\right)=\mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}-1}\right)
$$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

$$
K=\left\{\mathrm{m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{k}} \mid h(c) m_{1} h(c) m_{2} \ldots h(c) m_{k} h(c)=\beta\right\}
$$

The map σ and Language K

The map σ is the obvious one:

$$
\sigma\left(c t_{1} c t_{2} \ldots t_{k-2} c t_{k-1} c\right)=\mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}-1}\right)
$$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

$$
K=\left\{\mathrm{m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{k}} \mid h(c) m_{1} h(c) m_{2} \ldots h(c) m_{k} h(c)=\beta\right\}
$$

With these definitions:

$$
\sigma^{-1}(K)=\left\{c t_{1} c t_{2} \ldots c t_{k} c \mid \mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}}\right) \in K\right\}
$$

The map σ and Language K

The map σ is the obvious one:

$$
\sigma\left(c t_{1} c t_{2} \ldots t_{k-2} c t_{k-1} c\right)=\mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}-1}\right)
$$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

$$
K=\left\{\mathrm{m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{k}} \mid h(c) m_{1} h(c) m_{2} \ldots h(c) m_{k} h(c)=\beta\right\}
$$

With these definitions:

$$
\begin{aligned}
\sigma^{-1}(K) & =\left\{c t_{1} c t_{2} \ldots c t_{k} c \mid \mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}}\right) \in K\right\} \\
& =\left\{c t_{1} c t_{2} \ldots c t_{k} c \mid h(c) h\left(t_{1}\right) h(c) h\left(t_{2}\right) \ldots h(c) h\left(t_{k}\right) h(c)=\beta\right.
\end{aligned}
$$

The map σ and Language K

The map σ is the obvious one:

$$
\sigma\left(c t_{1} c t_{2} \ldots t_{k-2} c t_{k-1} c\right)=\mathrm{h}\left(\mathrm{t}_{1}\right) \mathrm{h}\left(\mathrm{t}_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}-1}\right)
$$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

$$
K=\left\{\mathrm{m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{k}} \mid h(c) m_{1} h(c) m_{2} \ldots h(c) m_{k} h(c)=\beta\right\}
$$

With these definitions:

$$
\begin{aligned}
\sigma^{-1}(K) & =\left\{c t_{1} c t_{2} \ldots c t_{k} c \mid h\left(t_{1}\right) h\left(t_{2}\right) \ldots \mathrm{h}\left(\mathrm{t}_{\mathrm{k}}\right) \in K\right\} \\
& =\left\{c t_{1} c t_{2} \ldots c t_{k} c \mid h(c) h\left(t_{1}\right) h(c) h\left(t_{2}\right) \ldots h(c) h\left(t_{k}\right) h(c)=\beta\right. \\
& =L_{\beta} \cap \Delta \text { as required by } 2.1
\end{aligned}
$$

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid $\operatorname{Loc}_{m}(M)$: Let M be a monoid and $m \in M$. Then

$$
\operatorname{Loc}_{m}(M)=(m M \cap M m, \circ, m)
$$

where $(x m) \circ(m y) \triangleq x m y$.

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid $\operatorname{Loc}_{m}(M)$: Let M be a monoid and $m \in M$. Then

$$
\operatorname{Loc}_{m}(M)=(m M \cap M m, \circ, m)
$$

where $(x m) \circ(m y) \triangleq x m y$.

- Observe that $x m \circ y m=x m \circ m y^{\prime}=x m y^{\prime}=x y m$. Thus \circ is associative and $m=1 . m$ is the identity w.r.t. \circ.

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid $\operatorname{Loc}_{m}(M)$: Let M be a monoid and $m \in M$. Then

$$
\operatorname{Loc}_{m}(M)=(m M \cap M m, \circ, m)
$$

where $(x m) \circ(m y) \triangleq x m y$.

- Observe that $x m \circ y m=x m \circ m y^{\prime}=x m y^{\prime}=x y m$. Thus \circ is associative and $m=1 . m$ is the identity w.r.t. \circ.
- $x m \circ x m \circ \ldots x m=x^{N} m$. Thus, $\operatorname{Loc}_{m}(M)$ is aperiodic whenever M is aperiodic.

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.
The Monoid $\operatorname{Loc}_{m}(M)$: Let M be a monoid and $m \in M$. Then

$$
\operatorname{Loc}_{m}(M)=(m M \cap M m, \circ, m)
$$

where $(x m) \circ(m y) \triangleq x m y$.

- Observe that $x m \circ y m=x m \circ m y^{\prime}=x m y^{\prime}=x y m$. Thus \circ is associative and $m=1 . m$ is the identity w.r.t. o.
- $x m \circ x m \circ \ldots x m=x^{N} m$. Thus, $\operatorname{Loc}_{m}(M)$ is aperiodic whenever M is aperiodic.
- $1 \notin \operatorname{Loc}_{m}(M)$ if $m \neq 1$. This follows from the fact that $1 \neq m^{\prime} m$ for any $m, m^{\prime} \neq 1$.

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^{*} \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by $g(m)=h(c) m h(c)$.

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^{*} \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by $g(m)=h(c) m h(c)$.
Claim: $K=g^{-1}(\beta)$

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^{*} \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by $g(m)=h(c) m h(c)$.
Claim: $K=g^{-1}(\beta)$
Proof:

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^{*} \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by $g(m)=h(c) m h(c)$.
Claim: $K=g^{-1}(\beta)$
Proof:

- Note that $\beta \in \operatorname{Loc}_{h(c)}(M)$ whenever $h^{-1}(\beta) \cap \Delta \neq \emptyset$.

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^{*} \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by $g(m)=h(c) m h(c)$.
Claim: $K=g^{-1}(\beta)$

Proof:

- Note that $\beta \in \operatorname{Loc}_{h(c)}(M)$ whenever $h^{-1}(\beta) \cap \Delta \neq \emptyset$.
- $g\left(m_{1} m_{2} \ldots m_{k}\right)=\beta$ if and only if $h(c) m_{1} h(c) \circ h(c) m_{2} h(c) \circ \ldots h(c) m_{k} h(c)=\beta$ if and only if $h(c) m_{1} h(c) m_{2} h(c) \ldots h(c) m_{k} h(c)=\beta$ if and only if $m_{1} m_{2} \ldots m_{k} \in K$.

A Monoid for K

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^{*} \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by $g(m)=h(c) m h(c)$.
Claim: $K=g^{-1}(\beta)$
Proof:

- Note that $\beta \in \operatorname{Loc}_{h(c)}(M)$ whenever $h^{-1}(\beta) \cap \Delta \neq \emptyset$.
- $g\left(m_{1} m_{2} \ldots m_{k}\right)=\beta$ if and only if $h(c) m_{1} h(c) \circ h(c) m_{2} h(c) \circ \ldots h(c) m_{k} h(c)=\beta$ if and only if $h(c) m_{1} h(c) m_{2} h(c) \ldots h(c) m_{k} h(c)=\beta$ if and only if $m_{1} m_{2} \ldots m_{k} \in K$.
K is recognized by a smaller monoid and hence there is an $L T L_{M}$ formula that describes K

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$
\begin{aligned}
\mathrm{m}^{\#}= & (c \wedge \mathrm{XFc}) \wedge\left(X \psi_{\mathrm{m}}^{\prime}\right) \\
& \text { where } \psi_{m} \text { is the formula in } L T L_{A} \text { describing } \\
& h^{-1}(m) \cap A^{+} \text {and } \psi_{m}^{\prime} \text { is its relativization }
\end{aligned}
$$

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$
\begin{aligned}
\mathrm{m}^{\#}= & (c \wedge \mathrm{XFc}) \wedge\left(\mathrm{X} \psi_{\mathrm{m}}^{\prime}\right) \\
& \text { where } \psi_{m} \text { is the formula in } L T L_{A} \text { describing } \\
& h^{-1}(m) \cap A^{+} \text {and } \psi_{m}^{\prime} \text { is its relativization } \\
\left(\varphi_{1} \wedge \varphi_{2}\right)^{\#=} & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#}
\end{aligned}
$$

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$
\begin{aligned}
\mathrm{m}^{\#}= & (c \wedge \mathrm{XFc}) \wedge\left(\mathrm{X} \psi_{\mathrm{m}}^{\prime}\right) \\
& \text { where } \psi_{m} \text { is the formula in } L T L_{A} \text { describing } \\
& h^{-1}(m) \cap A^{+} \text {and } \psi_{m}^{\prime} \text { is its relativization } \\
\left(\varphi_{1} \wedge \varphi_{2}\right)^{\#=}= & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#} \\
(\neg \varphi)^{\#}= & \neg\left(\varphi^{\#}\right) \wedge(c \wedge \mathrm{XFc})
\end{aligned}
$$

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$
\begin{aligned}
\mathrm{m}^{\#}= & (c \wedge \mathrm{XFc}) \wedge\left(\mathrm{X} \psi_{\mathrm{m}}^{\prime}\right) \\
& \text { where } \psi_{m} \text { is the formula in } L T L_{A} \text { describing } \\
& h^{-1}(m) \cap A^{+} \text {and } \psi_{m}^{\prime} \text { is its relativization } \\
\left(\varphi_{1} \wedge \varphi_{2}\right)^{\#=}= & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#} \\
(\neg \varphi)^{\#}= & \neg\left(\varphi^{\#}\right) \wedge(c \wedge \mathrm{XFc}) \\
(\mathrm{X} \varphi)^{\#}= & \mathrm{X}\left(\neg c \cup\left(c \wedge \varphi^{\#}\right)\right)
\end{aligned}
$$

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$
\begin{aligned}
\mathrm{m}^{\#}= & (c \wedge \mathrm{XFc}) \wedge\left(\mathrm{X} \psi_{\mathrm{m}}^{\prime}\right) \\
& \text { where } \psi_{m} \text { is the formula in } L T L_{A} \text { describing } \\
& h^{-1}(m) \cap A^{+} \text {and } \psi_{m}^{\prime} \text { is its relativization } \\
\left(\varphi_{1} \wedge \varphi_{2}\right)^{\#=}= & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#} \\
(\neg \varphi)^{\#}= & \neg\left(\varphi^{\#}\right) \wedge(c \wedge \mathrm{XFc}) \\
(\mathrm{X} \varphi)^{\#}= & \mathrm{X}\left(\neg \mathrm{C} \mathrm{\cup}\left(c \wedge \varphi^{\#}\right)\right) \\
\left(\varphi_{1} \cup \varphi_{2}\right)^{\#}= & \left(c \Longrightarrow \varphi_{1}^{\#}\right) \cup\left(c \wedge \varphi_{2}^{\#}\right)
\end{aligned}
$$

Lifting the formula for K

We show that for any formula φ in $L T L_{M}$, there is a formula $\varphi^{\#}$ in $L T L_{\Sigma}$ such that

$$
\begin{aligned}
w \models \varphi^{\#} \Longleftrightarrow & w=c t_{1} c t_{2} c \ldots t_{k-1} c t_{k}, \text { with } t_{i} \in A^{*} \\
& \text { and } \sigma\left(c t_{1} c t_{2} \ldots t_{k-1} c\right) \models \varphi
\end{aligned}
$$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$
\begin{aligned}
\mathrm{m}^{\#}= & (c \wedge \mathrm{XFc}) \wedge\left(\mathrm{Xc} \vee \mathrm{X} \psi_{\mathrm{m}}^{\prime}\right) \\
& \text { where } \psi_{m} \text { is the formula in } L T L_{A} \text { describing } \\
& h^{-1}(m) \cap A^{+} \text {and } \psi_{m}^{\prime} \text { is its relativization } \\
\left(\varphi_{1} \wedge \varphi_{2}\right)^{\#=}= & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#} \\
(\neg \varphi)^{\#}= & \neg\left(\varphi^{\#}\right) \wedge(c \wedge \mathrm{XFc}) \\
(\mathrm{X} \varphi)^{\#}= & \mathrm{X}\left(\neg c \cup\left(c \wedge \varphi^{\#}\right)\right) \\
\left(\varphi_{1} \cup \varphi_{2}\right)^{\#}= & \left(c \Longrightarrow \varphi_{1}^{\#}\right) \cup\left(\mathrm{c} \wedge \varphi_{2}^{\#}\right)
\end{aligned}
$$

Combining the Three parts

The formula describing $\left(L_{\alpha} \cap A^{*}\right) .\left(L_{\beta} \cap \Delta\right) .\left(L_{\gamma} \cap A^{*}\right)$ is the conjunction of the formulas describing the following languages.
(1) $\left(L_{\alpha} \cap A^{*}\right) .\left(c A^{*}\right)^{+} . c . A^{*}$.
(2) $A^{*} .\left(c A^{*}\right)^{+} . c \cdot\left(L_{\gamma} \cap A^{*}\right)$.
(3) $A^{*} \cdot\left(\left(L_{\beta} \cap \Delta\right) \cdot A^{*}\right)$.

Combining the Three parts

The formula describing $\left(L_{\alpha} \cap A^{*}\right) .\left(L_{\beta} \cap \Delta\right) .\left(L_{\gamma} \cap A^{*}\right)$ is the conjunction of the formulas describing the following languages.
(1) $\left(L_{\alpha} \cap A^{*}\right) .\left(c A^{*}\right)^{+} . c . A^{*}$.
(2) $A^{*} .\left(c A^{*}\right)^{+} . c \cdot\left(L_{\gamma} \cap A^{*}\right)$.
(3) $A^{*} \cdot\left(\left(L_{\beta} \cap \Delta\right) \cdot A^{*}\right)$.

Combining the Three parts

The formula describing $\left(L_{\alpha} \cap A^{*}\right) .\left(L_{\beta} \cap \Delta\right) .\left(L_{\gamma} \cap A^{*}\right)$ is the conjunction of the formulas describing the following languages.
(1) $\left(L_{\alpha} \cap A^{*}\right) .\left(c A^{*}\right)^{+} . c . A^{*}$.

$$
\varphi^{\prime} \wedge(F(c \wedge X F c))
$$

(2) $A^{*} .\left(c A^{*}\right)^{+} . c \cdot\left(L_{\gamma} \cap A^{*}\right)$.
(3) $A^{*} \cdot\left(\left(L_{\beta} \cap \Delta\right) \cdot A^{*}\right)$.

Combining the Three parts

The formula describing $\left(L_{\alpha} \cap A^{*}\right) .\left(L_{\beta} \cap \Delta\right) .\left(L_{\gamma} \cap A^{*}\right)$ is the conjunction of the formulas describing the following languages.
(1) $\left(L_{\alpha} \cap A^{*}\right) .\left(c A^{*}\right)^{+} . c . A^{*}$.

$$
\varphi^{\prime} \wedge(F(c \wedge X F c))
$$

(2) $A^{*} .\left(c A^{*}\right)^{+} . c .\left(L_{\gamma} \cap A^{*}\right)$.

$$
F(c \wedge X F(c \wedge F(c \wedge \neg(X F c) \wedge X \varphi)))
$$

(3) $A^{*} \cdot\left(\left(L_{\beta} \cap \Delta\right) \cdot A^{*}\right)$.

Combining the Three parts

The formula describing $\left(L_{\alpha} \cap A^{*}\right) .\left(L_{\beta} \cap \Delta\right) .\left(L_{\gamma} \cap A^{*}\right)$ is the conjunction of the formulas describing the following languages.
(1) $\left(L_{\alpha} \cap A^{*}\right) .\left(c A^{*}\right)^{+} . c . A^{*}$.

$$
\varphi^{\prime} \wedge(F(c \wedge X F c))
$$

(2) $A^{*} .\left(c A^{*}\right)^{+} . c .\left(L_{\gamma} \cap A^{*}\right)$.

$$
F(c \wedge X F(c \wedge F(c \wedge \neg(X F c) \wedge X \varphi)))
$$

(3) $A^{*} \cdot\left(\left(L_{\beta} \cap \Delta\right) \cdot A^{*}\right)$.

$$
\neg c \mathrm{U}\left(\mathrm{c} \wedge \varphi^{\#}\right)
$$

