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Minmax Automata
•Finite state automaton equipped with +ve-integer registers

•Registers updated using expressions composed of register 
names, min, max, +1


•Cost of a run     =   value of the output register at the end  
Cost of a word   =   minimum value of an accepting run


•Every automaton defines a function from Σ* to ℕ ∪ {∞}
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a, blck := blck+ 1 b,
blck := 0

lrgst := max(lrgst, blck)
scndlrgst := max(scndlrgst, min(lrgst, blck))

an1ban2b . . . ankb ! Second-largest(n1, n2, . . . , nk)



Minmax Automata
•Subclasses : Min automata (Max automata) if expressions 
use only min (max) and +1 


•Variants studied by Alur et. al., Bojańczyk, and Bojańczyk-
Toruńczyk.


•Contains distance automata (by powerset like construction) 
hence equivalence/inclusion of automata is undecidable. 
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•Variants studied by Alur et. al., Bojańczyk, and Bojańczyk-
Toruńczyk.


•Contains distance automata (by powerset like construction) 
hence equivalence/inclusion of automata is undecidable. 

Boundedness

Does there exist a k ∈ ℕ :  for all words w ∈ Σ*  A(w) ≤ k ?



Framework for solving Boundedness (Colcombet)

e.g. For w = an1ban2b . . . ankb,
f(w) = |w|
g(w) = max(largest(n1, . . . , nk),#b(w))

Cost equivalence
Functions f, g : Σ* → ℕ ∪ {∞} are cost equivalent  if over every 
subset L ⊆ Σ*,   f is bounded ⇔ g is bounded



Framework for solving Boundedness (Colcombet)

• To solve boundedness, it is sufficient to consider Automata 
up to cost equivalence.  

• Cost function — A class of the cost equivalence relation

e.g. For w = an1ban2b . . . ankb,
f(w) = |w|
g(w) = max(largest(n1, . . . , nk),#b(w))

Cost equivalence
Functions f, g : Σ* → ℕ ∪ {∞} are cost equivalent  if over every 
subset L ⊆ Σ*,   f is bounded ⇔ g is bounded



Regularity for cost functions

•Class of cost functions paralleling regular languages


•Strong closure properties (Boolean closure, projections, reversal, …)


•Alternate characterisations (automata, logic, algebra, regular expressions, …)


•decidability — boundedness, equivalence, domination
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B-automaton (Abdulla-Krcal-Yi, Bojańczyk-Colcombet, Kirsten)

• Finite state automata extended with +ve-integer counters

!
• Operations on counters — increment, epsilon(no op), reset 
!

• Cost of a run     =   maximal value of any counter during the run 
Cost of a word   =   minimum value of an accepting run 



B-automaton (Abdulla-Krcal-Yi, Bojańczyk-Colcombet, Kirsten)

• Finite state automata extended with +ve-integer counters

!
• Operations on counters — increment, epsilon(no op), reset 

• Cost of a run     =   maximum value of any counter during the run 
Cost of a word   =   minimum value of an accepting run 

a, i

b, r b, r

a, ia, ✏
b, rb, r

an1ban2b . . . ankb ! Second-largest(n1, n2, . . . , nk)

1 2 3



Minmax and B-automata

Theorem
Minmax automata ⊆ B-automata ⊆ history-deterministic Max automata 

• History-determinism — nondeterminism can be resolved by 
looking at the history.  

• First inclusion depends on the fact, alternating B-automata = B-
automata. (Colcombet-Löding)  

• Second inclusion is based on a new semantics for B-automata. 
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Minmax and B-automata

Theorem
Minmax automata ⊆ B-automata ⊆ history-deterministic Max automata 

• History-determinism — nondeterminism can be resolved by 
looking at the history.  

• First inclusion depends on the fact, alternating B-automata = B-
automata. (Colcombet-Löding)  

• Second inclusion is based on a new semantics for B-automata. 

Corollary

Boundedness of minmax automata is decidable.



Deterministic Minmax automata

•Distance automata ✔ (1-counter B-automata with no reset)


•Desert automata (Bala) ✔ (1-counter B-automata with no 
epsilon)


•Distance Desert (Bala-Kirsten) ? (1-counter B-automata)

Deterministic minmax automata — when the transition relation is a function.

Open Question. Does det. minmax automata subsume B-automata? 

Open Question. Does alternating distance automata subsume B-
automata? 



Det. min automata and det. max automata

•Strictly weaker


•Robust classes with many characterisations


•In particular det. min automata = distance automata.


•Decidable classes — given a B-automaton it is 
possible to check there is an equivalent det. min 
(det. max) automaton.


•Provides a way to prove inexpressibility results for 
weighted automata.



Det. min automata and det. max automata 
Theorem (—, Kuperberg-Toruńczyk)

1. Deterministic max-automata.

2. 1-counter S-automata with no reset.

3. Smallest class containing size and closed under max,  min with regular languages, sup-
projections. 


4. Cost regular expressions of the form e₁ e₂ˢ e₃ where e₁, e₂, e₃ are regular expressions

5. Cost MSO formulas of the form ∀X (ϕ(x) → |X| ≥ n) where  ϕ(x) is a MSO formula


6. Functions defined by a stab. monoid M and an Ideal I such that M,I has #-reduction : for 
any #-expression evaluating in I there is an expression obtained by erasing all but one # 
which is still in I. 

The following classes effectively coincide.

The following classes effectively coincide.
1. Deterministic min-automata.


2. Distance automata.


3. Smallest class containing size and closed under min, max, inf-projections. 


4. Cost regular expressions of the form with no * on top of a B.

5. Cost MSO formulas of the form ∃X (ϕ(x) ∧ |X| ≤ n) where  ϕ(x) is a MSO formula


6. Stab. monoid satisfying (xe)](xe])](xe)] = (xe)]



Thank you


